SBOS538F January   2011  – December 2016 OPA2322 , OPA322 , OPA4322

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information: OPA322, OPA322S
    5. 6.5 Thermal Information: OPA2322, OPA2322S
    6. 6.6 Thermal Information: OPA4322, OPA4322S
    7. 6.7 Electrical Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Operating Voltage
      2. 7.3.2 Input and ESD Protection
      3. 7.3.3 Phase Reversal
      4. 7.3.4 Feedback Capacitor Improves Response
      5. 7.3.5 EMI Susceptibility and Input Filtering
      6. 7.3.6 Output Impedance
      7. 7.3.7 Capacitive Load and Stability
      8. 7.3.8 Overload Recovery Time
      9. 7.3.9 Shutdown Function
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Active Filter
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Leadless DFN Package
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 TINA-TI™ (Free Software Download)
        2. 11.1.2.2 DIP Adapter EVM
        3. 11.1.2.3 Universal Operational Amplifier EVM
        4. 11.1.2.4 TI Precision Designs
        5. 11.1.2.5 WEBENCH Filter Designer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Community Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Description

Overview

The OPA322 family of operational amplifiers (op amps) are high-speed, precision amplifiers perfectly suited to drive 12-, 14-, and 16-bit analog-to-digital converters. Low-output impedance with flat frequency characteristics and zero-crossover distortion circuitry enable high linearity over the full input common-mode range, achieving true rail-to-rail input from a 1.8-V to 5.5-V single supply.

Functional Block Diagram

OPA322 OPA322S OPA2322 OPA2322S OPA4322 OPA4322S SBD_SBOS538.gif

Feature Description

Operating Voltage

The OPA322 series op amps are unity-gain stable and can operate on a single-supply voltage (1.8 V to 5.5 V), or a split-supply voltage (±0.9 V to ±2.75 V), making them highly versatile and easy to use. The power-supply pins must have local bypass ceramic capacitors (typically 0.001 μF to 0.1 μF). These amplifiers are fully specified from 1.8 V to 5.5 V and over the extended temperature range of –40°C to 125°C. Parameters that can exhibit variance with regard to operating voltage or temperature are presented in the Typical Characteristics.

Input and ESD Protection

The OPA322 incorporates internal electrostatic discharge (ESD) protection circuits on all pins. In the case of input and output pins, this protection primarily consists of current-steering diodes connected between the input and power-supply pins. These ESD protection diodes also provide in-circuit input overdrive protection, as long as the current is limited to 10 mA as stated in the Absolute Maximum Ratings. Many input signals are inherently current-limited to less than 10 mA; therefore, a limiting resistor is not required. Figure 30 shows how a series input resistor (RS) may be added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and the value must be kept to the minimum in noise-sensitive applications.

OPA322 OPA322S OPA2322 OPA2322S OPA4322 OPA4322S ai_curr_protection_bos538.gif Figure 30. Input Current Protection

Phase Reversal

The OPA322 op amps are designed to be immune to phase reversal when the input pins exceed the supply voltages, therefore providing further in-system stability and predictability. Figure 31 shows the input voltage exceeding the supply voltage without any phase reversal.

OPA322 OPA322S OPA2322 OPA2322S OPA4322 OPA4322S ai_anti_ph_bos538.gif Figure 31. No Phase Reversal

Feedback Capacitor Improves Response

For optimum settling time and stability with high-impedance feedback networks, it may be necessary to add a feedback capacitor across the feedback resistor, RF, as shown in Figure 32. This capacitor compensates for the zero created by the feedback network impedance and the OPA322 input capacitance (and any parasitic layout capacitance). The effect becomes more significant with higher impedance networks.

OPA322 OPA322S OPA2322 OPA2322S OPA4322 OPA4322S ai_fback_dyna_perf_bos538.gif

NOINDENT:

NOTE: Where CIN is equal to the OPA322 input capacitance (approximately 9 pF) plus any parasitic layout capacitance.
Figure 32. Feedback Capacitor Improves Dynamic Performance

For the circuit shown in Figure 32, the value of the variable feedback capacitor must be chosen so that the input resistance times the input capacitance of the OPA322 (typically 9 pF) plus the estimated parasitic layout capacitance equals the feedback capacitor times the feedback resistor with Equation 1.

Equation 1. RIN × CIN = RF × CF

where

  • CIN is equal to the OPA322 input capacitance (sum of differential and common-mode) plus the layout capacitance

The capacitor value can be adjusted until optimum performance is obtained.

EMI Susceptibility and Input Filtering

Operational amplifiers vary in susceptibility to electromagnetic interference (EMI). If conducted EMI enters the device, the DC offset observed at the amplifier output may shift from the nominal value while EMI is present. This shift is a result of signal rectification associated with the internal semiconductor junctions. While all operational amplifier pin functions can be affected by EMI, the input pins are likely to be the most susceptible. The OPA322 operational amplifier family incorporates an internal input low-pass filter that reduces the amplifier response to EMI. Both common-mode and differential mode filtering are provided by the input filter. The filter is designed for a cutoff frequency of approximately 580 MHz (–3 dB), with a roll-off of 20 dB per decade.

Output Impedance

The open-loop output impedance of the OPA322 common-source output stage is approximately 90 Ω. When the op amp is connected with feedback, this value is reduced significantly by the loop gain. For each decade rise in the closed-loop gain, the loop gain is reduced by the same amount, which results in a tenfold increase in effective output impedance. While the OPA322 output impedance remains very flat over a wide frequency range, at higher frequencies the output impedance rises as the open-loop gain of the op amp drops. However, at these frequencies the output also becomes capacitive as a result of parasitic capacitance. This characteristic, in turn, prevents the output impedance from becoming too high, which can cause stability problems when driving large capacitive loads. As mentioned previously, the OPA322 has excellent capacitive load drive capability for an op amp with its bandwidth.

Capacitive Load and Stability

The OPA322 is designed to be used in applications where driving a capacitive load is required. As with all op amps, there may be specific instances where the OPA322 can become unstable. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing whether an amplifier is stable in operation. An op amp in the unity-gain (+1-V/V) buffer configuration and driving a capacitive load exhibits a greater tendency to become unstable than an amplifier operated at a higher noise gain. The capacitive load, in conjunction with the op amp output resistance, creates a pole within the feedback loop that degrades the phase margin. The degradation of the phase margin increases as the capacitive loading increases. When operating in the unity-gain configuration, the OPA322 remains stable with a pure capacitive load up to approximately 1 nF.

The equivalent series resistance (ESR) of some very large capacitors (CL > 1 µF) is sufficient to alter the phase characteristics in the feedback loop such that the amplifier remains stable. Increasing the amplifier closed-loop gain allows the amplifier to drive increasingly larger capacitance. This increased capability is evident when observing the overshoot response of the amplifier at higher voltage gains, as shown in Figure 33. One technique for increasing the capacitive load drive capability of the amplifier operating in unity gain is to insert a small resistor (RS), typically 10 Ω to 20 Ω, in series with the output, as shown in Figure 34.

This resistor significantly reduces the overshoot and ringing associated with large capacitive loads. A possible problem with this technique is that a voltage divider is created with the added series resistor and any resistor connected in parallel with the capacitive load. The voltage divider introduces a gain error at the output that reduces the output swing. The error contributed by the voltage divider, however, may be insignificant. For instance, with a load resistance, RL = 10 kΩ and RS = 20 Ω, the gain error is only about 0.2%. However, when RL is decreased to 600 Ω, which the OPA322 is able to drive, the error increases to 7.5%.

OPA322 OPA322S OPA2322 OPA2322S OPA4322 OPA4322S tc_oshoot-cl_bos538.gif Figure 33. Small-Signal Overshoot vs Capacitive Load (100-mVPP Output Step)
OPA322 OPA322S OPA2322 OPA2322S OPA4322 OPA4322S ai_imprv_cl_drive_bos538.gif Figure 34. Improving Capacitive Load Drive

Overload Recovery Time

Overload recovery time is the time required for the output of the amplifier to come out of saturation and recover to the linear region. Overload recovery is particularly important in applications where small signals must be amplified in the presence of large transients. Figure 35 and Figure 36 show the positive and negative overload recovery times of the OPA322, respectively. In both cases, the time elapsed before the OPA322 comes out of saturation is less than 100 ns. In addition, the symmetry between the positive and negative recovery times allows excellent signal rectification without distortion of the output signal.

spacer

OPA322 OPA322S OPA2322 OPA2322S OPA4322 OPA4322S ai_pos_oload_recov_bos538.gif Figure 35. Positive Recovery Time
OPA322 OPA322S OPA2322 OPA2322S OPA4322 OPA4322S ai_neg_oload_recov_bos538.gif Figure 36. Negative Recovery Time

Shutdown Function

The SHDN (enable) pin function of the OPAx322S is referenced to the negative supply voltage of the operational amplifier. A logic level high enables the op amp. A valid logic high is defined as voltage [(V+) – 0.1 V], up to (V+), applied to the SHDN pin. A valid logic low is defined as [(V–) + 0.1 V], down to (V–), applied to the enable pin. The maximum allowed voltage applied to SHDN is 5.5 V with respect to the negative supply, independent of the positive supply voltage. This pin must either be connected to a valid high or a low voltage or driven, and not left as an open circuit.

The logic input is a high-impedance CMOS input. Dual op amp versions are independently controlled and quad op amp versions are controlled in pairs with logic inputs. For battery-operated applications, this feature may be used to greatly reduce the average current and extend battery life. The enable time is 10 µs for full shutdown of all channels; disable time is 3 μs. When disabled, the output assumes a high-impedance state. This architecture allows the OPAx322S to be operated as a gated amplifier (or to have the device output multiplexed onto a common analog output bus). Shutdown time (tOFF) depends on loading conditions and increases with increased load resistance. To ensure shutdown (disable) within a specific shutdown time, the specified 10-kΩ load to mid-supply (VS / 2) is required. If using the OPAx322S without a load, the resulting turnoff time is significantly increased.

Device Functional Modes

The OPA322 family of operational amplifiers are operational when power-supply voltages between 1.8 V to 5.5 V are applied. Devices with an S suffix have a shutdown capability. For a detailed description of the shutdown function, refer to Shutdown Function.