SPRS948 July   2016 SM320C6457-HIREL

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Description (continued)
    5. 1.5 Functional Block Diagram
  2. 2Revision History
  3. 3Terminal Configuration and Functions
    1. 3.1 Pin Diagram
    2. 3.2 Pin Attributes
      1. 3.2.1 Pin Map
    3. 3.3 Signal Descriptions
  4. 4Specifications
    1. 4.1 Absolute Maximum Ratings
    2. 4.2 ESD Ratings
    3. 4.3 Recommended Operating Conditions
    4. 4.4 Electrical Characteristics
    5. 4.5 Thermal Resistance Characteristics
    6. 4.6 Timing and Switching Characteristics
      1. 4.6.1 Timing Parameters and Information
        1. 4.6.1.1 1.8-V Signal Transition Levels
        2. 4.6.1.2 3.3-V Signal Transition Levels
        3. 4.6.1.3 3.3-V Signal Transition Rates
        4. 4.6.1.4 Timing Parameters and Board Routing Analysis
      2. 4.6.2 Power Supply Sequencing
        1. 4.6.2.1 Power-Supply Decoupling
        2. 4.6.2.2 Power-Down Operation
        3. 4.6.2.3 Power Supply to Peripheral I/O Mapping
      3. 4.6.3 Reset Timing
      4. 4.6.4 Clock and Control Signal Transition Behavior
    7. 4.7 Peripherals
      1. 4.7.1  Enhanced Direct Memory Access (EDMA3) Controller
        1. 4.7.1.1 EDMA3 Device-Specific Information
        2. 4.7.1.2 EDMA3 Channel Synchronization Events
        3. 4.7.1.3 EDMA3 Peripheral Register Description(s)
      2. 4.7.2  Interrupts
        1. 4.7.2.1 Interrupt Sources and Interrupt Controller
        2. 4.7.2.2 External Interrupts Electrical Data/Timing
      3. 4.7.3  Reset Controller
        1. 4.7.3.1 Power-on Reset (POR Pin)
        2. 4.7.3.2 Warm Reset (RESET Pin)
        3. 4.7.3.3 System Reset
        4. 4.7.3.4 CPU Reset
        5. 4.7.3.5 Reset Priority
        6. 4.7.3.6 Reset Controller Register
          1. 4.7.3.6.1 Reset Type Status Register
          2. 4.7.3.6.2 Software Reset Control Register
          3. 4.7.3.6.3 Reset Configuration Register
      4. 4.7.4  PLL1 and PLL1 Controller
        1. 4.7.4.1 PLL1 Controller Device-Specific Information
          1. 4.7.4.1.1 Internal Clocks and Maximum Operating Frequencies
          2. 4.7.4.1.2 PLL1 Controller Operating Modes
          3. 4.7.4.1.3 PLL1 Stabilization, Lock, and Reset Times
        2. 4.7.4.2 PLL1 Controller Memory Map
        3. 4.7.4.3 PLL1 Controller Registers
          1. 4.7.4.3.1  PLL1 Control Register
          2. 4.7.4.3.2  PLL Multiplier Control Register
          3. 4.7.4.3.3  PLL Post-Divider Control Register
          4. 4.7.4.3.4  PLL Controller Divider 3 Register
          5. 4.7.4.3.5  PLL Controller Divider 6 Register
          6. 4.7.4.3.6  PLL Controller Divider 7 Register
          7. 4.7.4.3.7  PLL Controller Divider 8 Register
          8. 4.7.4.3.8  PLL Controller Command Register
          9. 4.7.4.3.9  PLL Controller Status Register
          10. 4.7.4.3.10 PLL Controller Clock Align Control Register
          11. 4.7.4.3.11 PLLDIV Ratio Change Status Register
          12. 4.7.4.3.12 SYSCLK Status Register
        4. 4.7.4.4 PLL1 Controller Input and Output Electrical Data/Timing
      5. 4.7.5  PLL2
        1. 4.7.5.1 PLL2 Device-Specific Information
          1. 4.7.5.1.1 Internal Clocks and Maximum Operating Frequencies
          2. 4.7.5.1.2 PLL2 Operating Modes
        2. 4.7.5.2 PLL2 Input Clock Electrical Data/Timing
      6. 4.7.6  DDR2 Memory Controller
        1. 4.7.6.1 DDR2 Memory Controller Device-Specific Information
        2. 4.7.6.2 DDR2 Memory Controller Peripheral Register Description(s)
        3. 4.7.6.3 DDR2 Memory Controller Electrical Data/Timing
      7. 4.7.7  External Memory Interface A (EMIFA)
        1. 4.7.7.1 EMIFA Device-Specific Information
        2. 4.7.7.2 EMIFA Peripheral Register Description(s)
        3. 4.7.7.3 EMIFA Electrical Data/Timing
          1. 4.7.7.3.1 AECLKIN and AECLKOUT Timing
          2. 4.7.7.3.2 Asynchronous Memory Timing
          3. 4.7.7.3.3 Programmable Synchronous Interface Timing
      8. 4.7.8  I2C Peripheral
        1. 4.7.8.1 I2C Device-Specific Information
        2. 4.7.8.2 I2C Peripheral Register Description(s)
        3. 4.7.8.3 I2C Electrical Data/Timing
          1. 4.7.8.3.1 Inter-Integrated Circuits (I2C) Timing
      9. 4.7.9  Host-Port Interface (HPI) Peripheral
        1. 4.7.9.1 HPI Device-Specific Information
        2. 4.7.9.2 HPI Peripheral Register Description(s)
        3. 4.7.9.3 HPI Electrical Data/Timing
      10. 4.7.10 Multichannel Buffered Serial Port (McBSP)
        1. 4.7.10.1 McBSP Device-Specific Information
          1. 4.7.10.1.1 McBSP Peripheral Register Description(s)
        2. 4.7.10.2 McBSP Electrical Data/Timing
      11. 4.7.11 Ethernet MAC (EMAC)
        1. 4.7.11.1 EMAC Device-Specific Information
        2. 4.7.11.2 EMAC Peripheral Register Description(s)
        3. 4.7.11.3 EMAC Electrical Data/Timing (SGMII)
      12. 4.7.12 Management Data Input/Output (MDIO)
        1. 4.7.12.1 MDIO Peripheral Register Description(s)
        2. 4.7.12.2 MDIO Electrical Data/Timing
      13. 4.7.13 Timers
        1. 4.7.13.1 Timers Device-Specific Information
          1. 4.7.13.1.1 Timer Watchdog Select
        2. 4.7.13.2 Timers Peripheral Register Description(s)
        3. 4.7.13.3 Timers Electrical Data/Timing
      14. 4.7.14 Enhanced Viterbi-Decoder Coprocessor (VCP2)
        1. 4.7.14.1 VCP2 Device-Specific Information
        2. 4.7.14.2 VCP2 Peripheral Register Description
      15. 4.7.15 Enhanced Turbo Decoder Coprocessor (TCP2)
        1. 4.7.15.1 TCP2 Device-Specific Information
      16. 4.7.16 UTOPIA
        1. 4.7.16.1 UTOPIA Device-Specific Information
        2. 4.7.16.2 UTOPIA Peripheral Register Description(s)
        3. 4.7.16.3 UTOPIA Electrical Data/Timing
      17. 4.7.17 Serial RapidIO (SRIO) Port
        1. 4.7.17.1 Serial RapidIO Device-Specific Information
        2. 4.7.17.2 Serial RapidIO Peripheral Register Description(s)
        3. 4.7.17.3 Serial RapidIO Electrical Data/Timing
      18. 4.7.18 General-Purpose Input/Output (GPIO)
        1. 4.7.18.1 GPIO Device-Specific Information
        2. 4.7.18.2 GPIO Peripheral Register Description(s)
        3. 4.7.18.3 GPIO Electrical Data/Timing
      19. 4.7.19 Emulation Features and Capability
        1. 4.7.19.1 Advanced Event Triggering (AET)
        2. 4.7.19.2 Trace
          1. 4.7.19.2.1 Trace Electrical Data/Timing
        3. 4.7.19.3 IEEE 1149.1 JTAG
          1. 4.7.19.3.1 IEEE 1149.1 JTAG Compatibility Statement
          2. 4.7.19.3.2 JTAG Electrical Data/Timing
          3. 4.7.19.3.3 HS-RTDX Electrical Data/Timing
  5. 5Detailed Description
    1. 5.1 Device Overview
    2. 5.2 CPU (DSP Core) Description
    3. 5.3 C64x+ Megamodule
      1. 5.3.1 Memory Architecture
        1. 5.3.1.1 L1P Memory
        2. 5.3.1.2 L1D Memory
        3. 5.3.1.3 L2 Memory
        4. 5.3.1.4 L3 Memory
      2. 5.3.2 Memory Protection
      3. 5.3.3 Bandwidth Management
      4. 5.3.4 Power-Down Control
      5. 5.3.5 Megamodule Resets
      6. 5.3.6 Megamodule Revision
      7. 5.3.7 C64x+ Megamodule Register Descriptions
    4. 5.4 Memory Map Summary
    5. 5.5 Device Configuration
      1. 5.5.1 Device Configuration at Device Reset
      2. 5.5.2 Peripheral Selection After Device Reset
      3. 5.5.3 Device State Control Registers
      4. 5.5.4 Device Status Register Description
      5. 5.5.5 JTAG ID (JTAGID) Register Description
      6. 5.5.6 Pullup/Pulldown Resistors
    6. 5.6 System Interconnect
      1. 5.6.1 Internal Buses, Bridges, and Switch Fabrics
      2. 5.6.2 Data Switch Fabric Connections
      3. 5.6.3 Configuration Switch Fabric
      4. 5.6.4 Bus Priorities
    7. 5.7 Boot Modes
      1. 5.7.1 Second-Level Bootloaders
      2. 5.7.2 Boot Sequence
    8. 5.8 Rake Search Accelerator (RSA)
  6. 6Device and Documentation Support
    1. 6.1 Device Nomenclature
    2. 6.2 Tools and Software
    3. 6.3 Documentation Support
      1. 6.3.1 Receiving Notification of Documentation Updates
    4. 6.4 Community Resources
    5. 6.5 Trademarks
    6. 6.6 Electrostatic Discharge Caution
    7. 6.7 Glossary
  7. 7Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
  • GMH|688
Thermal pad, mechanical data (Package|Pins)
Orderable Information

3 Terminal Configuration and Functions

3.1 Pin Diagram

Figure 3-1 shows the ball locations for the 688-pin GMH package and is used in conjunction with Table 4-1 through Table 4-27 to locate signal names and ball grid numbers.

SM320C6457-HIREL GMH_688-Pin_Ball_Grid_Array_(BGA)_Package_sprs948.gif Figure 3-1 GMH 688-Pin Ball Grid Array (BGA) Package

3.2 Pin Attributes

Table 3-2 identifies the external signal names, the associated pin (ball) numbers along with the mechanical package designator, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal pullup/pulldown resistors, and a functional pin description. For more detailed information on device configuration, peripheral selection, multiplexed/shared pins, and pullup/pulldown resistors, see Section 5.5.

Use the symbol definitions in Table 3-1 when reading Table 3-2.

Table 3-1 I/O Functional Symbol Definitions

FUNCTIONAL SYMBOL DEFINITION Table 3-2
COLUMN HEADING
IPD or IPU Internal 100-µA pulldown or pullup is provided for this terminal. In most systems, a 1-kΩ resistor can be used to oppose the IPD/IPU. For more detailed information on pulldown/pullup resistors and situations in which external pulldown/pullup resistors are required, see Section 5.5.6. IPD/IPU
A Analog signal Type
GND Ground Type
I Input terminal Type
O Output terminal Type
S Supply voltage Type
Z Three-state terminal or high impedance Type

Table 3-2 Pin Attributes

SIGNAL NAME BALL NO. TYPE IPD/IPU DESCRIPTION
CLOCK/PLL CONFIGURATIONS
CORECLKN AH7 I Clock Input for PLL1 (differential).
CORECLKP AH6 I Clock Input for PLL1 (differential).
ALTCORECLK AF6 Alternate Core Clock (single-ended) input to main PLL [vs. CORECLK(N|P)].
CORECLKSEL AE6 Core Clock Select. Selects between CORECLK(N|P) and ALTCORECLK to the Main PLL.
  • When CORECLKSEL = 0, it selects the differential clock [CORECLK(N|P)].
  • When CORECLKSEL = 1, it selects the single-ended clock [ALTCORECLK].
SYSCLKOUT AD7 O/Z IPD SYSCLKOUT is the clock output at 1/10 (default rate) of the device speed.
DDRREFCLKN E6 I DDR Reference Clock Input to DDR PLL (differential).
DDRREFCLKP D6 I DDR Reference Clock Input to DDR PLL (differential).
ALTDDRCLK C6 I Alternate DDR Clock (single-ended) input to DDR PLL [vs. DDRREFCLK(N|P)].
DDRCLKSEL G6 I DDR Clock Select. Selects between DDRREFCLK(N|P) and ALTDDRCLK to the DDR PLL.
  • When DDRCLKSEL = 0, it selects the differential clock [DDRREFCLK(N|P)].
  • When DDRCLKSEL = 1, it selects the single-ended clock [ALTDDRCLK].
RIOSGMIICLKN AG6 RapidIO/SGMII Reference Clock to drive the RapidIO and SGMII SerDes (differential).
RIOSGMIICLKP AG7 RapidIO/SGMII Reference Clock to drive the RapidIO and SGMII SerDes (differential).
JTAG EMULATION
TMS Y2 I IPU JTAG test-port mode select
TDO AF1 O/Z JTAG test-port data out
TDI AB1 I IPU JTAG test-port data in
TCK AH3 I IPU JTAG test-port clock
TRST AE2 I IPD JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, see Section 4.7.19.3.1.
EMU0(3) AD5 I/O/Z IPU Emulation pin 0
EMU1(3) AE5 Emulation pin 1
EMU2 AH5 Emulation pin 2
EMU3 AE4 Emulation pin 3
EMU4 AH4 Emulation pin 4
EMU5 AG4 Emulation pin 5
EMU6 AF4 Emulation pin 6
EMU7 AG2 Emulation pin 7
EMU8 AG3 Emulation pin 8
EMU9 AD4 Emulation pin 9
EMU10 AE3 Emulation pin 10
EMU11 AF2 Emulation pin 11
EMU12 AE1 Emulation pin 12
EMU13 AF3 Emulation pin 13
EMU14 AC1 Emulation pin 14
EMU15 AD1 Emulation pin 15
EMU16 AD3 Emulation pin 16
EMU17 AA1 Emulation pin 17
EMU18 AC2 Emulation pin 18
RESETS, INTERRUPTS, AND GENERAL-PURPOSE INPUT/OUTPUTS
RESET AH23 I Device reset
NMI AE19 I IPD Nonmaskable interrupt, edge-driven (rising edge).

NOTE: Any noise on the NMI pin may trigger an NMI interrupt. Therefore, if the NMI pin is not used, it is recommended that the NMI pin be grounded instead of relying on the IPD.

RESETSTAT AF23 O Reset Status pin. The RESETSTAT pin indicates when the device is in reset
POR AG22 I Power on reset.
GP15 F23 I/O/Z IPD General-purpose input/output (GPIO) pins (I/O/Z). GPIO[15:0] pins are multiplexed at power-on reset for configuration latching:
  • GPIO[0] is mapped to LENDIAN
  • GPIO[4:1] are mapped to BOOTMODE[3:0] (see Section 5.7)
  • GPIO[8:5] are mapped to DEVNUM[3:0]
  • GPIO[13:9] are mapped to CFGGP[4:0]
  • GPIO[14] is mapped to HPIWIDTH
  • GPIO[15] is mapped to ECLKINSEL
GP14 D23
GP13 C23
GP12 D24
GP11 C25
GP10 A25
GP09 C24
GP08 B25
GP07 F5
GP06 C5
GP05 F6
GP04 B5
GP03 B4
GP02 D5
GP01 E5
GP00 A5
HOST PORT INTERFACE (HPI)
HINT L4 I/O/Z Host interrupt from DSP to host (O/Z)
HCNTL1 M5 I/O/Z Host control -selects between control, address, or data registers (I) [default]
HCNTL0 L6 I/O/Z Host control -selects between control, address, or data registers (I) [default]
HHWIL L3 I/O/Z Host half-word select — first or second half-word (not necessarily high or low order).

For HPI16 bus width selection only] (I) [default]

HR/W K5 I/O/Z Host read or write select (I) [default]
HAS M4 I/O/Z Host address strobe (I) [default]
HCS M3 I/O/Z Host chip select (I) [default]
HDS1 L2 I/O/Z Host data strobe 1 (I) [default]
HDS2 L5 I/O/Z Host data strobe 2 (I) [default]
HRDY M6 I/O/Z Host ready from DSP to host (O/Z) [default]
HD31 P3 I/O/Z Host-port data [31:16] pin (I/O/Z) [default]
HD30 N6
HD29 T5
HD28 P6
HD27 U5
HD26 N1
HD25 V2
HD24 M1
HD23 U6
HD22 V1
HD21 U1
HD20 N2
HD19 T1
HD18 P2
HD17 R1
HD16 N3 I/O/Z Host-port data [15:0] pin (I/O/Z) [default]
HD15 T2
HD14 P4
HD13 U2
HD12 N4
HD11 W1
HD10 R5
HD09 T3
HD08 N5
HD07 R4
HD06 T6
HD05 U4
HD04 R6
HD03 T4
HD02 P5
HD01 K6
HD00 W2
EMIFA (64-BIT) — CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY
ABA1 V24 O/Z IPD EMIFA bank address control (ABA[1:0]). Active-low bank selects for the 64-bit EMIFA.
  • When interfacing to 16-bit Asynchronous devices, ABA1 carries bit 1 of the byte address.
  • For an 8-bit Asynchronous interface, ABA[1:0] are used to carry bits 1 and 0 of the byte address.
ABA0 V25
ACE5 V26 O/Z IPU EMIFA memory space enables.
  • Enabled by bits 28 through 31 of the word address
  • Only one pin is asserted during any external data access

NOTE

The SM320C6457-HIREL device does not have ACE0 and ACE1 pins.

ACE4 U27
ACE3 W25
ACE2 W26
ABE06 L25 O/Z IPU EMIFA byte-enable control.
  • Decoded from the low-order address bits. The number of address bits or byte enables used depends on the width of external memory.
  • Byte-write enables for most types of memory.
ABE05 L28
ABE04 L27
ABE03 Y28
ABE02 W27
ABE01 Y24
ABE00 Y25
EMIFA (64-BIT) — BUS ARBITRATION
AHOLDA N25 O IPU EMIFA hold-request-acknowledge to the host
AHOLD R28 I IPU EMIFA hold request from the host
ABUSREQ L26 O IPU EMIFA bus request output
EMIFA (64-BIT) — ASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL
AECLKIN N28 I IPD EMIFA external input clock. The EMIFA input clock (AECLKIN or SYSCLK7 clock) is selected at reset via the pullup/pulldown resistor on the GPIO[15] pin.

NOTE: AECLKIN is the default for the EMIFA input clock.

AECLKOUT V28 O/Z IPD EMIFA output clock [at EMIFA input clock (AECLKIN or SYSCLK7) frequency]
AAWE/ASWE AA24 O/Z IPU Asynchronous memory write-enable/Programmable synchronous interface write-enable
AARDY K28 I IPU Asynchronous memory ready input
AR/W W24 O/Z IPU Asynchronous memory read/write
AAOE/ASOE AE25 O/Z IPU Asynchronous/Programmable synchronous memory output-enable
ASADS/ASRE R25 O/Z IPU Programmable synchronous address strobe or read-enable
  • For programmable synchronous interface, the R_ENABLE field in the Chip Select x Configuration Register selects between ASADS and ASRE:
    • If R_ENABLE = 0, then the ASADS/ASRE signal functions as the ASADS signal.
    • If R_ENABLE = 1, then the ASADS/ASRE signal functions as the ASRE signal.
EMIFA (64-BIT) — ADDRESS
AEA19 P24 O/Z IPD EMIFA external address (word address) (O/Z)
AEA18 M25
AEA17 M24
AEA16 P25
AEA15 P26
AEA14 T24
AEA13 R26 O/Z IPU
AEA12 N27 O/Z IPD
AEA11 T25
AEA10 N24 O/Z IPD
AEA09 M26
AEA08 R24
AEA07 N26
AEA06 T28
AEA05 U28
AEA04 R27
AEA03 T27
AEA02 T26
AEA01 U26
AEA00 U25
EMIFA (64-BIT) — DATA
AED63 G24 I/O/Z IPU EMIFA external data
AED62 A26
AED61 C26
AED60 C27
AED59 E26
AED58 D27
AED57 D25
AED56 F26
AED55 H24
AED54 H25
AED53 D26
AED52 F27
AED51 B27
AED50 G26
AED49 B26
AED48 G27
AED47 J24
AED46 K25
AED45 J25
AED44 J26
AED43 H26
AED42 J27
AED41 C28
AED40 J28
AED39 D28
AED38 K24 I/O/Z IPU EMIFA external data
AED37 F28
AED36 G25
AED35 G28
AED34 K27
AED33 L24
AED32 K26
AED31 Y26
AED30 AF28
AED29 AA28
AED28 AB26
AED27 Y27
AED26 AB25
AED25 AA26 I/O/Z IPU EMIFA external data
AED24 AB24
AED23 AA25
AED22 AA27
AED21 AC28
AED20 AG27
AED19 AE28
AED18 AF27
AED17 AD28
AED16 AF26
AED15 AE27
AED14 AG25
AED13 AC27
AED12 AD26
AED11 AC25
AED10 AE26
AED09 AF25
AED08 AC26
AED07 AD25
AED06 AH26
AED05 AH25
AED04 AD27
AED03 AF24
AED02 AG26
AED01 AE24
AED00 AC24
DDR2 MEMORY CONTROLLER
DDRDQM0 C10 O/Z DDR2 EMIF Data Masks
DDRDQM1 C7
DDRDQM2 C19
DDRDQM3 C22
DDRBA0 C14 O/Z DDR Bank Address
DDRBA1 D14
DDRBA2 E14
DDRA00 F17 O/Z DDR2 EMIF Address Bus
DDRA01 E17
DDRA02 D17
DDRA03 C17
DDRA04 E16
DDRA05 D16
DDRA06 C16
DDRA07 B16
DDRA08 D15
DDRA09 C15
DDRA10 B15
DDRA11 A15
DDRA12 A14
DDRA13 B14
DDRCLKOUTP0 A13 O/Z DDR2 EMIF Output Clocks to drive SDRAMs (one clock pair per SDRAM)
DDRCLKOUTN0 B13
DDRCLKOUTP1 A17
DDRCLKOUTN1 B17
DDRD00 A12 O/Z DDR2 EMIF Data Bus
DDRD01 B12
DDRD02 C11
DDRD03 D11
DDRD04 A10
DDRD05 B10
DDRD06 C9
DDRD07 D9
DDRD08 C8
DDRD09 D8
DDRD10 E8
DDRD11 F8
DDRD12 B7
DDRD13 A7
DDRD14 B6
DDRD15 A6
DDRD16 B18
DDRD17 A18
DDRD18 C18
DDRD19 D18
DDRD20 A20
DDRD21 B20 O/Z DDR2 EMIF Data Bus
DDRD22 C20
DDRD23 D20
DDRD24 A21
DDRD25 B21
DDRD26 C21
DDRD27 D21
DDRD28 A23
DDRD29 B23
DDRD30 A24
DDRD31 B24
DDRCAS E12 O/Z DDR2 EMIF Column Address Strobe
DDRRAS D12 O/Z DDR2 EMIF Row Address Strobe
DDRCE E13 O/Z DDR2 EMIF Chip Enable
DDRWE C12 O/Z DDR2 EMIF Write Enable
DDRCKE D13 O/Z DDR2 EMIF Clock Enable
DDRDQS0P E10 I/O/Z DDR2 EMIF Data Strobe
DDRDQS0N D10
DDRDQS1P E7
DDRDQS1N D7
DDRDQS2P E19
DDRDQS2N D19
DDRDQS3P E22
DDRDQS3N D22
DDRRCVENIN0 A9 I DDR2 EMIF Data Strobe Gate Input/Outputs to help meet DDR Timing
DDRRCVENOUT0 B9 O/Z
DDRRCVENIN1 E20 I
DDRRCVENOUT1 F20 O/Z
DDRODT E15 O/Z DDR2 EMIF On Die Termination Outputs used to set termination on the SDRAMs
DDRSLRATE A27 I DDR2 Slew rate control
VREFSSTL C13 A Reference Voltage Input for SSTL18 buffers used by DDR2 EMIF (VDDS18_2)
TIMER 1
TOUT1L AF19 O/Z IPD Timer 1 output pin for lower 32-bit counter
TINP1L AG19 I IPD Timer 1 input pin for lower 32-bit counter
TIMER 0
TOUT0L AG20 O/Z IPD Timer 0 output pin for lower 32-bit counter
TINP0L AH20 I IPD Timer 0 input pin for lower 32-bit counter
INTER-INTEGRATED CIRCUIT (I2C)
SCL F24 I/O/Z I2C clock. When the I2C module is used, use an external pullup resistor.
SDA E24 I/O/Z I2C data. When I2C is used, ensure there is an external pullup resistor.
MULTICHANNEL BUFFERED SERIAL PORT (McBSP)
CLKS0 AA4 I IPD McBSP0 Module Clock
CLKR0 Y5 I/O/Z IPD McBSP0 Receive Clock
CLKX0 AB3 I/O/Z IPD McBSP0 Transmit Clock
DR0 Y6 I IPD McBSP0 Receive Data
DX0 W6 O/Z IPD McBSP0 Transmit Data
FSR0 V4 I/O/Z IPD McBSP0 Receive Frame Sync
FSX0 W4 I/O/Z IPD McBSP0 Transmit Frame Sync
CLKS1 Y1 I IPD McBSP1 Module Clock
CLKR1 Y4 I/O/Z IPD McBSP1 Receive Clock
CLKX1 AA3 I/O/Z IPD McBSP1 Transmit Clock
DR1 W3 I IPD McBSP1 Receive Data
DX1 Y3 O/Z IPD McBSP1 Transmit Data
FSR1 V5 I/O/Z IPD McBSP1 Receive Frame Sync
FSX1 W5 I/O/Z IPD McBSP1 Transmit Frame Sync
UNIVERSAL TEST AND OPERATIONS PHY INTERFACE for ASYNCHRONOUS TRANSFER MODE (ATM) [UTOPIA SLAVE]
UTOPIA SLAVE (ATM CONTROLLER) — TRANSMIT INTERFACE
UXCLK A4 I Source clock for UTOPIA transmit driven by Master ATM Controller.
UXCLAV C3 O/Z Transmit cell available status output signal from UTOPIA Slave.
  • 0 indicates a complete cell is NOT available for transmit
  • 1 indicates a complete cell is available for transmit
UXENB B3 I UTOPIA transmit interface enable input signal. Asserted by the Master ATM Controller to indicate that the UTOPIA Slave should put out on the Transmit Data Bus the first byte of valid data and the UXSOC signal in the next clock cycle.
UXSOC G4 O/Z Transmit Start-of-Cell signal. This signal is output by the UTOPIA Slave on the rising edge of the UXCLK, indicating that the first valid byte of the cell is available on the 8-bit Transmit Data Bus (UXDATA[7:0]).
UXADDR4 J4 I UTOPIA transmit address pins (UXADDR[4:0]) (I) 5-bit Slave transmit address input pins driven by the Master ATM Controller to identify and select one of the Slave devices (up to 31 possible) in the ATM System.
UXADDR3 H5
UXADDR2 K3
UXADDR1 J5
UXADDR0 H4
UXDATA7 F3 O/Z UTOPIA 8-bit transmit data bus (I/O/Z) Using the Transmit Data Bus, the UTOPIA Slave (on the rising edge of the UXCLK) transmits the 8-bit ATM cells to the Master ATM Controller.
UXDATA6 E4
UXDATA5 C4
UXDATA4 A3
UXDATA3 H3
UXDATA2 G3
UXDATA1 F4
UXDATA0 E3
UTOPIA SLAVE (ATM CONTROLLER) — RECEIVE INTERFACE
URCLK C1 I Source clock for UTOPIA receive driven by Master ATM Controller.
URCLAV B2 O/Z Receive cell available status output signal from UTOPIA Slave.
  • 0 indicates NO space is available to receive a cell from Master ATM Controller.
  • 1 indicates space is available to receive a cell from Master ATM Controller.
URENB K4 I UTOPIA receive interface enable input signal. Asserted by the Master ATM Controller to indicate to the UTOPIA Slave to sample the Receive Data Bus (URDATA[7:0]) and URSOC signal in the next clock cycle or thereafter.
URSOC G2 I Receive Start-of-Cell signal. This signal is output by the Master ATM Controller to indicate to the UTOPIA Slave that the first valid byte of the cell is available to sample on the 8-bit Receive Data Bus (URDATA[7:0]).
URADDR4 K1 I UTOPIA receive address pins [URADDR[4:0] (I)]: 5-bit Slave receive address input pins driven by the Master ATM Controller to identify and select one of the Slave devices (up to 31 possible) in the ATM System.
URADDR3 K2
URADDR2 J1
URADDR1 J3
URADDR0 H2
URDATA7 G1 I UTOPIA 8-bit Receive Data Bus (I/O/Z). Using the Receive Data Bus, the UTOPIA Slave (on the rising edge of the URCLK) can receive the 8-bit ATM cell data from the Master ATM Controller.
URDATA6 F2
URDATA5 F1
URDATA4 E2
URDATA3 E1
URDATA2 D2
URDATA1 D1
URDATA0 C2
SERIAL RAPIDIO (SRIO)
RIORXN0 AG8 I Serial RapidIO Receive Data (4 links)
RIORXP0 AG9
RIORXN1 AF11
RIORXP1 AF10
RIORXN2 AH13
RIORXP2 AH12
RIORXN3 AE13
RIORXP3 AE12
RIOTXN0 AE9 O Serial RapidIO Transmit data (4 links)
RIOTXP0 AE8
RIOTXN1 AH9
RIOTXP1 AH10
RIOTXN2 AF13
RIOTXP2 AF14
RIOTXN3 AG13
RIOTXP3 AG14
ETHERNET MAC (EMAC) AND SGMII
SGMIIRXN AF16 I Ethernet MAC SGMII Receive Data
SGMIIRXP AF17
SGMIITXN AH15 O Ethernet MAC SGMII Transmit Data
SGMIITXP AH14
MANAGEMENT DATA INPUT/OUTPUT (MDIO)
MDIO AH19 I/O/Z IPU MDIO Data
MDCLK AH18 O IPD MDIO Clock
VOLTAGE CONTROL TERMINALS
PTV18 A16 A PTV Compensation NMOS Reference Input. Install with 47-Ω, 5% resistor to GND
SUPPLY VOLTAGE MONITOR TERMINALS
CVDDMON U19 A 1.1-V CVDD Supply Monitor
DVDD33MON U22 A 3.3-V DVDD Supply Monitor
DVDD18MON G23 A 1.8-V DVDD Supply Monitor
SUPPLY VOLTAGE TERMINALS
VDDR18 AE10 S 1.8-V I/O supply voltage (SRIO/SGMII SerDes regulator supply).
AE16
VDDA11 AC10 S SRIO/SGMII analog supply:

1.1-V I/O supply voltage

Do not use core supply.

AC12
AC14
AC16
VDDD11 U13 S SRIO/SGMII SerDes digital supply:

1.1-V I/O supply voltage

Do not use core supply.

V12
V14
W11
W13
W15
VDDT11 AD9 S SRIO/SGMII SerDes termination supply:

1.1-V I/O supply voltage

Do not use core supply.

AD11
AD13
AD15
AD17
AF9
AF15
AG11
AH17
DVDD18 AA6 S 1.8-V I/O supply voltage
AB18
AB20
AB7
AC19
AC21
AC3
AC8
AD18
AD22
AF18
AG5
AH1
B11
B19
B22
DVDD18 B8 S 1.8-V I/O supply voltage
E11
E21
E23
E9
F10
F12
F14
F16
F18
G11
G13
G15
G17
G19
G21
G7
G9
J7
V6
Y7
DVDD33 A1 S 3.3-V I/O supply voltage
A28
AA23
AB22
AB28
AC23
AD24
AH24
AH28
D3
E25
E27
H1
H22
H27
J23
K22
L1
L23
L7
M22
M27
N23
N7
P1
P22
DVDD33 P27 S 3.3-V I/O supply voltage
R23
R3
R7
T22
U7
V22
V3
W23
Y22
CVDD K10 S 1.1-V core supply voltage
K12
K14
K16
K18
L11
L13
L15
L17
L19
M10
M12
M14
M16
M18
N11
N13
N15
N17
CVDD N19 S 1.1-V core supply voltage
P10
P12
P14
P16
P18
R11
R13
R15
R17
R19
T12
T14
T16
T18
U11
U15
U17
V10
V16
V18
W17
W19
PLLV1 AC5 S 1.8-V PLL Supply
PLLV2 F7 S 1.8-V PLL Supply
GROUND PINS
VSS A11 GND Ground pins
A19
A2
A22
A8
AA2
AA22
AA7
AB10
AB11
AB12
AB13
AB14
AB15
AB16
AB17
AB19
AB21
AB23
AB27
AB6
AB8
AB9
AC11
AC13
AC15
AC17
AC18
AC20
AC22
AC9
AD10
AD12
AD14
AD16
AD19
AD2
VSS AD23 GND Ground pins
AD8
AE11
AE14
AE15
AE17
AE18
AF5
AF8
AG1
AG10
AG12
AG15
AG17
AG18
AG24
AG28
AH11
AH16
AH2
AH27
AH8
B1
B28
D4
E18
E28
F11
F13
F15
F19
F21
F22
F25
F9
G10
G12
G14
VSS G16 GND Ground pins
G18
G20
G22
G8
H23
H28
H7
J2
J22
K11
K13
K15
K17
K19
K23
K7
L10
L12
L14
L16
L18
L22
M11
M13
M15
M17
M19
M2
M23
M28
M7
N10
N12
N14
N16
N18
N22
VSS P11 GND Ground pins
P13
P15
P17
P19
P23
P28
P7
R12
R14
R16
R18
R2
R22
T11
T13
T15
T17
T19
T23
T7
U10
U12
U14
U16
U18
U23
U24
U3
V11
V13
V15
V17
V19
V23
V27
V7
W10
W12
W14
W16
VSS W18 GND Ground pins
W22
W7
Y23
RESERVED PINS
RSV01 AC4 I/O/Z IPU Reserved - Unconnected
RSV02 AB2 I/O/Z IPU Reserved - Unconnected
RSV03 AB4 I/O/Z IPU Reserved - Unconnected
RSV04 AD20 O/Z IPD Reserved - Unconnected
RSV05 AD21 O/Z IPD Reserved - Unconnected
RSV06 AE20 A Reserved - Unconnected
RSV07 AE21 A Reserved - Unconnected
RSV08 AE7 O Reserved - Unconnected
RSV09 AF7 O Reserved - Unconnected
RSV10 H6 O Reserved - Unconnected
RSV11 J6 O Reserved - Unconnected
RSV12 AB5 A Reserved - Connect to GND
RSV13 AA5 A Reserved - Unconnected
RSV14 AF20 I/O/Z IPU Reserved - Unconnected
RSV15 AF21 I/O/Z IPU Reserved - Unconnected
RSV16 AF12 A Reserved - Unconnected
RSV17 AG16 A Reserved - Unconnected
RSV18 AH21 A Reserved - Unconnected
RSV19 AG21 A Reserved - Unconnected
RSV20 AC6 A Reserved - Unconnected
RSV21 AC7 A Reserved - Unconnected
RSV22 AE23 I IPU Reserved - Pullup to DVDD18 with 10-kΩ resistor.
RSV23 R10 S Reserved - Connected to CVDD
RSV23 T10 S Reserved - Connected to CVDD
RSV24 AD6 O/Z IPD Reserved - Unconnected
RSV25 G5 O/Z IPD Reserved - Unconnected
RSV26 AE22 Reserved - Unconnected
RSV27 AF22 Reserved - Unconnected
RSV28 AG23 Reserved - Unconnected
RSV29 AH22 Reserved - Unconnected

3.2.1 Pin Map

Figure 3-2 through Figure 3-5 show the SM320C6457-HIREL pin assignments in four quadrants (A, B, C, and D).

SM320C6457-HIREL Pin_Map_Quad_A_6484.gif Figure 3-2 SM320C6457-HIREL Pin Map (Bottom View) [Quadrant A]
SM320C6457-HIREL Pin_Map_Quad_B_6484.gif Figure 3-3 TCI648F Pin Map (Bottom View) [Quadrant B]
SM320C6457-HIREL Pin_Map_Quad_C_6484.gif Figure 3-4 TCI648F Pin Map (Bottom View) [Quadrant C]
SM320C6457-HIREL Pin_Map_Quad_D_6484.gif Figure 3-5 TCI648F Pin Map (Bottom View) [Quadrant D]

3.3 Signal Descriptions

Figure 3-6 shows the CPU and core peripheral signal groups.

SM320C6457-HIREL CPU_and_Peripheral_Signals_6484.gif Figure 3-6 CPU and Peripheral Signals

Figure 3-7 shows the timer peripheral I/O, the general purpose I/O, the Serial RapidIO, and the general purpose I/O reference clock, transmit, and receive signals.

SM320C6457-HIREL Timers_GPIO_RapidIO_Peripheral_Signals_6484.gif Figure 3-7 Timers/GPIO/RapidIO Peripheral Signals
(A) Reference clock to drive RapidIO and SGMII.

Figure 3-8 shows the EMIFA and DDR2 peripheral interfaces.

SM320C6457-HIREL EMIFA_and_DDR2_Memory_Controller_Peripheral_Signals_6484.gif Figure 3-8 EMIFA and DDR2 Memory Controller Peripheral Signals
(A) The EMIFA ACE0 and ACE1 are not functionally supported on SM320C6457-HIREL devices.

Figure 3-9 shows the HPI, McBSP, and I2C peripheral signals.

SM320C6457-HIREL HPI_McBSP_I2C_Peripheral_Signals_6484.gif Figure 3-9 HPI/McBSP/I2C Peripheral Signals
(A) When the HPI is enabled, the number of HPI pins used depends on the HPI configuration (HPI16 or HPI32).

Figure 3-10 shows the EMAC/MDIO (SGMII) peripheral signals.

SM320C6457-HIREL EMAC_MDIO_SGMII_Peripheral_Signals_6484.gif Figure 3-10 EMAC/MDIO (SGMII) Peripheral Signals
(A) Reference clock to drive RapidIO and SGMII.

Figure 3-11 shows the UTOPIA peripheral signals.

SM320C6457-HIREL UTOPIA_Periph_Signals_6484.gif Figure 3-11 UTOPIA Peripheral Signals