SLES217D November   2010  – March 2015 TAS5630B

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Audio Characteristics (BTL)
    7. 6.7 Audio Specification (Single-Ended Output)
    8. 6.8 Audio Specification (PBTL)
    9. 6.9 Typical Characteristics
      1. 6.9.1 BTL Configuration
      2. 6.9.2 SE Configuration
      3. 6.9.3 PBTL Configuration
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Power Supplies
      2. 7.3.2  System Power-Up and Power-Down Sequence
        1. 7.3.2.1 Powering Up
        2. 7.3.2.2 Powering Down
      3. 7.3.3  Error Reporting
      4. 7.3.4  Device Protection System
      5. 7.3.5  Pin-to-Pin Short-Circuit Protection (PPSC)
      6. 7.3.6  Overtemperature Protection
      7. 7.3.7  Undervoltage Protection (UVP) and Power-On Reset (POR)
      8. 7.3.8  Device Reset
      9. 7.3.9  Click and Pop in SE-Mode
      10. 7.3.10 PBTL Overload and Short Circuit
      11. 7.3.11 Oscillator
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 PCB Material Recommendation
      2. 8.1.2 PVDD Capacitor Recommendation
      3. 8.1.3 Decoupling Capacitor Recommendations
      4. 8.1.4 System Design Considerations
    2. 8.2 Typical Application
      1. 8.2.1 Typical Application Schematic
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Typical Differential-Input BTL Application With BD Modulation Filters
      3. 8.2.3 Typical Differential (2N) PBTL Application With BD Modulation Filters
      4. 8.2.4 Typical SE Application
      5. 8.2.5 Typical 2.1 System Differential-Input BTL and Unbalanced-Input SE Application
      6. 8.2.6 Typical Differential-Input BTL Application With BD Modulation Filters, DKD Package
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range unless otherwise noted (1)
MIN MAX UNIT
VDD to AGND –0.3 13.2 V
GVDD to AGND –0.3 13.2 V
PVDD_X to GND_X(2) –0.3 69 V
OUT_X to GND_X(2) –0.3 69 V
BST_X to GND_X(2) –0.3 82.2 V
BST_X to GVDD_X(2) –0.3 69 V
VREG to AGND –0.3 4.2 V
GND_X to GND –0.3 0.3 V
GND_X to AGND –0.3 0.3 V
OC_ADJ, M1, M2, M3, OSC_IO+, OSC_IO–, FREQ_ADJ, VI_CM, C_STARTUP, PSU_REF to AGND –0.3 4.2 V
INPUT_X –0.3 7 V
RESET, SD, OTW1, OTW2, CLIP, READY to AGND –0.3 7 V
Continuous sink current (SD, OTW1, OTW2, CLIP, READY) 9 mA
Operating junction temperature, TJ 0 150 °C
Storage temperature, Tstg –40 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) These voltages represents the dc voltage + peak ac waveform measured at the terminal of the device in all conditions.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
PVDD_x Half-bridge supply DC supply voltage 25 50 52.5 V
GVDD_x Supply for logic regulators and gate-drive circuitry DC supply voltage 10.8 12 13.2 V
VDD Digital regulator supply voltage DC supply voltage 10.8 12 13.2 V
RL(BTL) Load impedance (2) Output filter according to schematics in the application information section 3.5 4 Ω
RL(SE) (1) 1.8 2
RL(PBTL) (1) 2.4 3
LOUTPUT(BTL) Output filter inductance (2) Minimum output inductance at IOC 7 10 μH
LOUTPUT(SE) (1) 7 15
LOUTPUT(PBTL) (1) 7 10
fPWM PWM frame rate selectable for AM interference avoidance; 1% resistor tolerance. Nominal 385 400 415 kHz
AM1 315 333 350
AM2 260 300 335
RFREQ_ADJ PWM frame-rate-programming resistor Nominal; master mode 9.9 10 10.1
AM1; master mode 19.8 20 20.2
AM2; master mode 29.7 30 30.3
VFREQ_ADJ Voltage on FREQ_ADJ pin for slave mode operation Slave mode 3.3 V
ROCP Overcurrent-protection-programming resistor, cycle-by-cycle mode 64-pin QFP package (PHD) 22 33
44-Pin PSOP3 package (DKD) 24 33
Overcurrent-protection-programming resistor, latching mode PHD or DKD 47 68
TJ Junction temperature 0 125 °C
(1) See additional details for SE and PBTL in System Design Considerations.
(2) Values are for actual measured impedance over all combinations of tolerance, current and temperature and not simply the component rating.

6.4 Thermal Information

THERMAL METRIC(1) TAS5630B UNIT
PHD (HTQFP) DKD (HSSOP)
64 PINS 44 PINS
RθJA Junction-to-ambient thermal resistance 8.6 8.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.3 0.4
RθJB Junction-to-board thermal resistance 2.1 3.0
ψJT Junction-to-top characterization parameter 0.4 0.4
ψJB Junction-to-board characterization parameter 2.1 3.0
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

6.5 Electrical Characteristics

PVDD_X = 50 V, GVDD_X = 12 V, VDD = 12 V, TC (Case temperature) = 75°C, fS = 400 kHz, unless otherwise specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INTERNAL VOLTAGE REGULATOR AND CURRENT CONSUMPTION
VREG Voltage regulator, only used as reference node, VREG VDD = 12 V 3 3.3 3.6 V
VI_CM Analog comparator reference node, VI_CM 1.75 2 2.15 V
IVDD VDD supply current Operating, 50% duty cycle 22.5 mA
Idle, reset mode 22.5
IGVDD_X GVDD_x gate-supply current per half-bridge 50% duty cycle 12.5 mA
Reset mode 1.5
IPVDD_X Half-bridge supply current 50% duty cycle with recommended output filter 13.3 mA
Reset mode, No switching 870 μA
ANALOG INPUTS
RIN Input resistance READY = HIGH 33
VIN Maximum input voltage with symmetrical output swing 5 VPP
IIN Maximum input current 342 μA
G Voltage gain (VOUT/VIN) 23 dB
OSCILLATOR
fOSC_IO+ Nominal, master mode FPWM × 10 3.85 4 4.15 MHz
AM1, master mode 3.15 3.33 3.5
AM2, master mode 2.6 3 3.35
VIH High level input voltage 1.86 V
VIL Low level input voltage 1.45 V
OUTPUT-STAGE MOSFETs
RDS(on) Drain-to-source resistance, low side (LS) TJ = 25°C, excludes metallization resistance, GVDD = 12 V 60 100
Drain-to-source resistance, high side (HS) 60 100
I/O PROTECTION
Vuvp,G Undervoltage protection limit, GVDD_x and VDD 9.5 V
Vuvp,hyst(1) 0.6 V
OTW1(1) Overtemperature warning 1 95 100 105 °C
OTW2(1) Overtemperature warning 2 115 125 135 °C
OTWhyst(1) Temperature drop needed below OTW temperature for OTW to be inactive after OTW event 25 °C
OTE(1) Overtemperature error 145 155 165 °C
OTE-OTW differential 30 °C
OTEhyst(1) A reset must occur for SD to be released following an OTE event. 25
OLPC Overload protection counter fPWM = 400 kHz 2.6 ms
IOC Overcurrent limit protection Resistor – programmable, nominal peak current in 1-Ω load,
64-pin QFP package (PHD)
ROCP = 22 kΩ
15 A
Resistor – programmable, nominal peak current in 1-Ω load,
44-pin PSOP3 package (DKD),
ROCP = 24 kΩ
15
Overcurrent limit protection, latched Resistor – programmable, nominal peak current in 1-Ω load,
ROCP = 47 kΩ
15
IOCT Overcurrent response time Time from switching transition to flip-state induced by overcurrent 150 ns
IPD Internal pulldown resistor at output of each half-bridge Connected when RESET is active to provide bootstrap charge. Not used in SE mode 3 mA
STATIC DIGITAL SPECIFICATIONS
VIH High-level input voltage M1, M2, M3, RESET 2 V
VIL Low-level input voltage 0.8 V
Ilkg Input leakage current 100 μA
OTW/SHUTDOWN (SD)
RINT_PU Internal pullup resistance, OTW, OTW1, OTW2, CLIP, READY, SD to VREG 20 26 32
VOH High-level output voltage Internal pullup resistor 3 3.3 3.6 V
External pullup of 4.7 kΩ to 5 V 4.5 5
VOL Low-level output voltage IO = 4 mA 200 500 mV
FANOUT Device fanout OTW, OTW1, OTW2, SD, CLIP, READY No external pullup 30 devices
(1) Specified by design.

6.6 Audio Characteristics (BTL)

PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 50 V, GVDD_X = 12 V, RL = 4 Ω, fS = 400 kHz, ROC = 22 kΩ, TC = 75°C; output filter: LDEM = 7 μH, CDEM = 680 nF,
MODE = 010, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PO Power output per channel RL = 4 Ω, 10% THD+N, clipped output signal 300 W
RL = 6 Ω, 10% THD+N, clipped output signal 210
RL = 8 Ω, 10% THD+N, clipped output signal 160
RL = 4 Ω, 1% THD+N, unclipped output signal 240
RL = 6 Ω, 1% THD+N, unclipped output signal 160
RL = 8 Ω, 1% THD+N, unclipped output signal 125
THD+N Total harmonic distortion + noise 1 W 0.03%
Vn Output integrated noise A-weighted, AES17 filter, input capacitor grounded 270 μV
|VOS| Output offset voltage Inputs ac-coupled to AGND 20 50 mV
SNR Signal-to-noise ratio(1) A-weighted, AES17 filter 100 dB
DNR Dynamic range A-weighted, AES17 filter 100 dB
Pidle Power dissipation due to idle losses (IPVDD_X) PO = 0, four channels switching(2) 2.7 W
(1) SNR is calculated relative to 1% THD+N output level.
(2) Actual system idle losses also are affected by core losses of output inductors.

6.7 Audio Specification (Single-Ended Output)

PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1kHz, PVDD_X = 50 V, GVDD_X = 12 V, RL = 4 Ω, fS = 400 kHz, ROC = 22 kΩ, TC = 75°C; output filter: LDEM = 15 μH, CDEM = 470 μF,
MODE = 100, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PO Power output per channel RL = 2 Ω, 10% THD+N, clipped output signal 145 W
RL = 3 Ω, 10% THD+N, clipped output signal 100
RL = 4 Ω, 10% THD+N, clipped output signal 75
RL = 2 Ω, 1% THD+N, unclipped output signal 110
RL = 3 Ω, 1% THD+N, unclipped output signal 75
RL = 4 Ω, 1% THD+N, unclipped output signal 55
THD+N Total harmonic distortion + noise 1 W 0.07%
Vn Output integrated noise A-weighted, AES17 filter, input capacitor grounded 340 μV
SNR Signal-to-noise ratio(1) A-weighted, AES17 filter 93 dB
DNR Dynamic range A-weighted, AES17 filter 93 dB
Pidle Power dissipation due to idle losses (IPVDD_X) PO = 0, four channels switching(2) 2 W
(1) SNR is calculated relative to 1% THD+N output level.
(2) Actual system idle losses are affected by core losses of output inductors.

6.8 Audio Specification (PBTL)

PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 50 V, GVDD_X = 12 V, RL = 3 Ω, fS = 400 kHz, ROC = 22 kΩ, TC = 75°C; output filter: LDEM = 7 μH, CDEM = 1.5 μF,
MODE = 101-10, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PO Power output per channel RL = 3 Ω, 10% THD+N, clipped output signal 400 W
RL = 4 Ω, 10% THD+N, clipped output signal 300
RL = 3 Ω, 1% THD+N, unclipped output signal 310
RL = 4 Ω, 1% THD+N, unclipped output signal 230
THD+N Total harmonic distortion + noise 1 W 0.05%
Vn Output integrated noise A-weighted 260 μV
SNR Signal to noise ratio(1) A-weighted 100 dB
DNR Dynamic range A-weighted 100 dB
Pidle Power dissipation due to idle losses (IPVDD_X) PO = 0, four channels switching(2) 2.7 W
(1) SNR is calculated relative to 1% THD-N output level.
(2) Actual system idle losses are affected by core losses of output inductors.

6.9 Typical Characteristics

6.9.1 BTL Configuration

TAS5630B 4p1_TAS5630B_THD_vs_Po_BTL_10uH_PHD_75C_Ch1.pngFigure 2. Total Harmonic + Noise vs Output Power
TAS5630B 4p1_TAS5630B_Unclipped_Po_vs_PVDD_BTL_10uH_PHD_75C_Ch1.pngFigure 4. Unclipped Output Power vs Supply Voltage
TAS5630B 4p1_TAS5630B_Po_vs_PVDD_BTL_10uH_PHD_75C_Ch1.pngFigure 3. Output Power vs Supply Voltage
TAS5630B 4p1_TAS5630B_Eff_vs_Po_BTL_10uH_PHD_25C.pngFigure 5. System Efficiency vs Output Power
TAS5630B 4p1_TAS5630B_Power_Loss_vs_Po_BTL_10uH_PHD_25C.pngFigure 6. System Power Loss vs Output Power
TAS5630B 4p1_TAS5630B_Noise_Amplitude_vs_Freq_BTL_10uH_PHD_75C_Ch1.pngFigure 8. Noise Amplitude vs Frequency
TAS5630B 4p1_TAS5630B_Po_vs_Temp_BTL_10uH_PHD_75C_Ch1.pngFigure 7. Output Power vs Case Temperature

6.9.2 SE Configuration

1 Channel Driven

TAS5630B 4p1_TAS5630B_THD_vs_Po_SE_10uH_PHD_75C_Ch3.pngFigure 9. Total Harmonic Distortion + Noise vs Output Power
TAS5630B 4p1_TAS5630B_Po_vs_Temp_SE_10uH_PHD_75C_Ch3.pngFigure 11. Output Power vs Case Temperature
TAS5630B 4p1_TAS5630B_Po_vs_PVDD_SE_10uH_PHD_75C_Ch3.pngFigure 10. Output Power vs Supply Voltage

6.9.3 PBTL Configuration

TAS5630B 4p1_TAS5630B_THD_vs_Po_PBTL_BD_10uH_PHD_75C.pngFigure 12. Total Harmonic Distortion + Noise vs Output Power
TAS5630B 4p1_TAS5630B_Po_vs_Temp_PBTL_BD_10uH_PHD_75C.pngFigure 14. Output Power vs Case Temperature
TAS5630B 4p1_TAS5630B_Po_vs_PVDD_PBTL_BD_10uH_PHD_75C.pngFigure 13. Output Power vs Supply Voltage