SLVSCI4B February   2014  – September 2014 TPS22961

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Simplified Schematic
  5. Revision History
  6. Terminal Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics, VBIAS = 5.0 V
    6. 7.6 Electrical Characteristics, VBIAS = 3.0 V
    7. 7.7 Switching Characteristics
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 On/off Control
      2. 8.3.2 Input Capacitor (CIN)
      3. 8.3.3 Output Capacitor (CL)
      4. 8.3.4 VIN and VBIAS Voltage Range
  9. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Typical Application Powering a Downstream Module
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 VIN to VOUT Voltage Drop
          2. 9.2.1.2.2 Inrush Current
          3. 9.2.1.2.3 Thermal Considerations
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Typical Application Powering Rails Sensitive to Ringing and Overvoltage due to Fast Rise Time
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Picking Proper Inductor and Capacitor to Meet Voltage Overshoot Requirements
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Trademarks
    2. 12.2 Electrostatic Discharge Caution
    3. 12.3 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DNY|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

11 Layout

11.1 Layout Guidelines

  • VIN and VOUT traces should be as short and wide as possible to accommodate for high current.
  • Use vias under the exposed thermal pad for thermal relief for high current operation.
  • The VIN terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor should be placed as close to the device terminals as possible.
  • The VOUT terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is one-tenth of the VIN bypass capacitor of X5R or X7R dielectric rating. This capacitor should be placed as close to the device terminals as possible.
  • The VBIAS terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 0.1-µF ceramic with X5R or X7R dielectric.

11.2 Layout Example

rec_bd_lay_slvsci4.gifFigure 33. Recommended Board Layout