SLVSCV0B August   2015  – September 2016

PRODUCTION DATA.

1. Features
2. Applications
3. Description
4. Revision History
5. Device Comparison Table
6. Pin Configuration and Functions
7. Specifications
8. Detailed Description
1. 8.1 Overview
2. 8.2 Functional Block Diagram
3. 8.3 Feature Description
4. 8.4 Device Functional Modes
9. Application and Implementation
1. 9.1 Application Information
2. 9.2 Typical Applications
1. 9.2.1 Simple 3.7-A eFuse Protection for Set Top Boxes
2. 9.2.2 Inrush and Reverse Current Protection for Hold-Up Capacitor Application (for example, SSD)
3. 9.2.3 Controlled Power Down using TPS25923x
10. 10Power Supply Recommendations
11. 11Layout
12. 12Device and Documentation Support
13. 13Mechanical, Packaging, and Orderable Information

• DRC|10
• DRC|10

## 10 Power Supply Recommendations

The device is designed for supply voltage range of 4.5 V ≤ VIN ≤ 18 V. If the input supply is located more than a few inches from the device an input ceramic bypass capacitor higher than 0.1 μF is recommended. Power supply must be rated higher than the current limit set to avoid voltage droops during over current and short-circuit conditions.

### 10.1 Transient Protection

In case of short circuit and over load current limit, when the device interrupts current flow, input inductance generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the output. The peak amplitude of voltage spikes (transients) is dependent on value of inductance in series to the input or output of the device. Such transients can exceed the Absolute Maximum Ratings of the device if steps are not taken to address the issue.

Typical methods for addressing transients include:

• Minimizing lead length and inductance into and out of the device
• Using large PCB GND plane
• Schottky diode across the output to absorb negative spikes
• A low value ceramic capacitor (C(IN) = 0.001 µF to 0.1 µF) to absorb the energy and dampen the transients. The approximate value of input capacitance can be estimated with Equation 23:
Equation 23.

where

• V(IN) is the nominal supply voltage