SNVSCM8A October   2023  – December 2023 TPS3762

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Specifications
    2. 6.2 Absolute Maximum Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Requirements
    7. 6.7 Timing Requirements
    8. 6.8 Timing Diagrams
    9. 6.9 Typical Characteristic
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Voltage (VDD)
        1. 7.3.1.1 Undervoltage Lockout (VPOR < VDD < UVLO)
        2. 7.3.1.2 Power-On Reset (VDD < VPOR )
      2. 7.3.2 SENSE
        1. 7.3.2.1 Reverse Polarity Protection
        2. 7.3.2.2 SENSE Hysteresis
      3. 7.3.3 Output Logic Configurations
        1. 7.3.3.1 Open-Drain
        2. 7.3.3.2 Active-Low (RESET)
        3. 7.3.3.3 Latching
      4. 7.3.4 User-Programmable Reset Time Delay
        1. 7.3.4.1 Reset Time Delay Configuration
      5. 7.3.5 User-Programmable Sense Delay
        1. 7.3.5.1 Sense Time Delay Configuration
      6. 7.3.6 Built-In Self-Test
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Adjustable Voltage Thresholds
    3. 8.3 Typical Application
      1. 8.3.1 Design 1: SELV Power Supply Monitoring
        1. 8.3.1.1 Design Requirements
        2. 8.3.1.2 Detailed Design Procedure
          1. 8.3.1.2.1 Setting Voltage Threshold
          2. 8.3.1.2.2 Meeting the Sense and Reset Delay
          3. 8.3.1.2.3 Setting Supply Voltage
          4. 8.3.1.2.4 Initiating Built-In Self-Test and Clearing Latch
        3. 8.3.1.3 Application Curves
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Power Dissipation and Device Operation
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Nomenclature
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Reset Time Delay Configuration

The time delay (tCTR) can be programmed by connecting a capacitor between CTR pin and GND.

The relationship between external capacitor CCTR_EXT (typ) and the time delay tCTR (typ) is given by Equation 1.

Equation 1. tCTR (typ) = RCTR (typ) x CCTR_EXT (typ) + tCTR (no cap)

RCTR (typ) = is in kilo ohms (kΩ)

CCTR_EXT (typ) = is given in microfarads (μF)

tCTR (typ) = is the reset time delay (ms)

The reset delay varies according to three variables: the external capacitor (CCTR_EXT), CTR pin internal resistance (RCTR) provided in Section 6, and a constant. The minimum and maximum variance due to the constant is show in Equation 5 and Equation 6:

Equation 2. tCTR (min) = RCTR (min) x CCTR_EXT (min) + tCTR (no cap (min))
Equation 3. tCTR (max) = RCTR (max) x CCTR_EXT (max) + tCTR (no cap (max))

There is no limit to the capacitor on CTR pin. Having a too large of a capacitor value can cause very slow charge up (rise times) due to capacitor leakage and system noise can cause the internal circuit to hold RESET active.

* Leakages on the capacitor can effect accuracy of reset time delay.