SLVS996D September 2009 – September 2015 TPS54262-Q1
PRODUCTION DATA.
| MIN | MAX | UNIT | ||||
|---|---|---|---|---|---|---|
| Input voltage | EN | –0.3 | 60 | V | ||
| VIN | –0.3 | 60 | ||||
| VReg | –0.3 | 20 | ||||
| LPM | –0.3 | 5.5 | ||||
| OV_TH | –0.3 | 5.5 | ||||
| RST_TH | –0.3 | 5.5 | ||||
| SYNC | –0.3 | 5.5 | ||||
| VSENSE | –0.3 | 5.5 | ||||
| Output voltage | BOOT | –0.3 | 65 | V | ||
| PH | DC voltage | –0.3 | 60 | |||
| DC voltage, TJ = –40°C | –0.85 | |||||
| DC voltage, TJ = 125°C | –0.5 | |||||
| 30-ns Transient Pulse | –2 | |||||
| 200-ns Transient Pulse | –1 | |||||
| RT | –0.3 | 5.5 | ||||
| RST | –0.3 | 5.5 | ||||
| Cdly | –0.3 | 8 | ||||
| SS | –0.3 | 8 | ||||
| COMP | –0.3 | 7 | ||||
| Temperature | Operating virtual junction temperature, TJ | -40 | 150 | °C | ||
| Storage temperature, Tstg | –55 | 165 | ||||
| VALUE | UNIT | |||||
|---|---|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human body model (HBM), per AEC Q100-002(1)(2) | ±2000 | V | ||
| Charged device model (CDM), per AEC Q100-011 | Corner pins (1, 10, 11, and 20) | ±750 | ||||
| Other pins | ±750 | |||||
| MIN | NOM | MAX | UNIT | |||
|---|---|---|---|---|---|---|
| VI | Unregulated buck supply input voltage (VIN, EN) | 3.6 | 48 | V | ||
| VReg | Regulated output voltage | In continuous conduction mode (CCM) | 0.9 | 18 | V | |
| Power up in low-power mode (LPM) or discontinuous conduction mode (DCM) | 0.9 | 5.5 | V | |||
| Bootstrap capacitor (BOOT) | 3.6 | 56 | V | |||
| Switched outputs (PH) | 3.6 | 48 | V | |||
| Logic levels (RST, VSENSE, OV_TH, RST_TH, Rslew, SYNC, RT) | 0 | 5.25 | V | |||
| Logic levels (SS, Cdly, COMP) | 0 | 6.5 | V | |||
| TA | Operating ambient temperature | –40 | 125 | °C | ||
| THERMAL METRIC(1) | TPS54262-Q1 | UNIT | |
|---|---|---|---|
| PWP (HTSSOP) | |||
| 20 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 36.2 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 20.9 | °C/W |
| RθJB | Junction-to-board thermal resistance | 17.9 | °C/W |
| ψJT | Junction-to-top characterization parameter | 0.5 | °C/W |
| ψJB | Junction-to-board characterization parameter | 17.7 | °C/W |
| RθJC(bot) | Junction-to-case (bottom) thermal resistance | 1.4 | °C/W |
| PARAMETER | TEST CONDITIONS | TEST(1) | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|---|
| INPUT POWER SUPPLY | ||||||||
| VIN | Supply voltage on VIN | Normal mode: after initial start-up | Info | 3.6 | 48 | V | ||
| Low-power mode | Falling threshold (LPM disabled) | 8 | ||||||
| Rising threshold (LPM activated) | 8.5 | |||||||
| High voltage threshold (LPM disabled) | 29 | 31 | 34 | |||||
| Iq-Normal | Quiescent current, normal mode | Open loop test – maximum duty cycle VIN = 7 V to 48 V |
PT | 5 | 10 | mA | ||
| Iq-LPM | Quiescent current, low-power mode | ILoad < 1 mA, VIN = 12 V | TA = 25°C | PT | 50 | 70 | µA | |
| –40 < TJ < 150°C | 75 | |||||||
| ILoad < 1 mA, VIN = 24 V | TA = 25°C | 75 | ||||||
| –40 < TJ < 150°C | 75 | |||||||
| ISD | Shutdown current | EN = 0 V, device is off | TA = 25°C, VIN = 12 V | PT | 1 | 4 | µA | |
| TRANSITION TIMES (LOW POWER – NORMAL MODES) | ||||||||
| td1 | Transition delay, normal mode to low-power mode | VIN = 12 V, VReg = 5 V, ILoad = 1 A to 1 mA | CT | 100 | µs | |||
| td2 | Transition delay, low-power mode to normal mode | VIN = 12 V, VReg = 5 V ILoad = 1 mA to 1 A | CT | 5 | µs | |||
| SWITCH MODE SUPPLY; VReg | ||||||||
| VReg | Regulator output | VSENSE = 0.8 Vref | Info | 0.9 | 18 | V | ||
| VSENSE | Feedback voltage | VReg = 0.9 V to 18 V (open loop) | CT | 0.788 | 0.8 | 0.812 | V | |
| RDS(ON) | Internal switch resistance | Measured across VIN and PH, ILoad = 500 mA | PT | 500 | mΩ | |||
| ICL | Switch current limit, cycle by cycle | VIN = 12 V | Info | 2.5 | 3.2 | 4.1 | A | |
| tON-Min | Duty cycle pulse width | Bench CHAR only | Info | 50 | 100 | 150 | ns | |
| tOFF-Min | Bench CHAR only | Info | 100 | 200 | 250 | |||
| fsw | Switching frequency | Set using external resistor on RT pin | PT | 0.2 | 2.2 | MHz | ||
| fsw | Internal oscillator frequency tolerance | PT | –10% | 10% | ||||
| ISink | Start-up condition | OV_TH = 0 V, VReg = 10 V | Info | 1 | mA | |||
| ILimit | Prevent overshoot | 0 V < OV_TH < 0.8 V, VReg = 10 V | Info | 80 | mA | |||
| PARAMETER | TEST CONDITIONS | TEST(2) | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| ENABLE (EN) | |||||||
| VIL | Low input threshold voltage | PT | 0.7 | V | |||
| VIH | High input threshold voltage | PT | 1.7 | V | |||
| Ilkg | Leakage current into EN terminal | EN = 60 V | PT | 100 | 135 | µA | |
| EN = 12 V | 8 | 15 | µA | ||||
| RESET DELAY (Cdly) | |||||||
| IO | External capacitor charge current | EN = high | PT | 1.4 | 2 | 2.6 | µA |
| VThreshold | Switching threshold voltage | Output voltage in regulation | PT | 2 | V | ||
| LOW-POWER MODE (LPM) | |||||||
| VIL | Low input threshold voltage | VIN = 12 V | PT | 0.7 | V | ||
| VIH | High input threshold voltage | VIN = 12 V | PT | 1.7 | V | ||
| Ilkg | Leakage current into LPM terminal | LPM = 5 V | PT | 65 | 95 | µA | |
| RESET OUTPUT (RST) | |||||||
| trdly | POR delay timer | Based on Cdly capacitor | PT | 3.6 | 7 | ms/nF | |
| VReg_RST | Reset threshold voltage for VReg | Check RST output | PT | 0.768 | 0.832 | V | |
| tnRSTdly | Filter time | Delay before RST is asserted low | PT | 10 | 20 | 35 | µs |
| SOFT START (SS) | |||||||
| ISS | Soft-start source current | PT | 40 | 50 | 60 | µA | |
| SYNCHRONIZATION (SYNC) | |||||||
| VIL | Low input threshold voltage | PT | 0.7 | V | |||
| VIH | High input threshold voltage | PT | 1.7 | V | |||
| Ilkg | Leakage current | SYNC = 5 V | PT | 65 | 95 | µA | |
| SYNC (fext) | External input clock frequency | VIN = 12 V, VReg = 5 V, 180 kHz < fsw < fext < 2 × fsw < 2.2 MHz |
CT | 180 | 2200 | kHz | |
| SYNCtrans | External clock to internal clock | No external clock, VIN = 12 V, VReg = 5 V | Info | 32 | µs | ||
| SYNCtrans | Internal clock to external clock | External clock = 1 MHz, VIN = 12 V, VReg = 5 V |
Info | 2.5 | µs | ||
| SYNCCLK | Minimum duty cycle | CT | 30% | ||||
| SYNCCLK | Maximum duty cycle | CT | 70% | ||||
| Rslew | |||||||
| IRslew | Rslew = 50 kΩ | CT | 20 | µA | |||
| IRslew | Rslew = 10 kΩ | CT | 100 | µA | |||
| OVERVOLTAGE SUPERVISORS (OV_TH) | |||||||
| VReg_OV | Threshold voltage for VReg during overvoltage | Internal switch is turned off | PT | 0.768 | 0.832 | V | |
| VReg = 5 V | Internal pulldown on VReg, OV_TH = 1 V | 70(1) | mA | ||||
| THERMAL SHUTDOWN | |||||||
| TSD | Thermal shutdown junction temperature | CT | 175 | °C | |||
| THYS | Hysteresis | CT | 30 | °C | |||
| FIGURE | |
|---|---|
| Efficiency vs Load Current for Different Rslew Resistors | Figure 1 |
| Efficiency vs Load Current for Different Vin | Figure 2 |
| LPM, Quiescent Current Variation With Temperature | Figure 3 |
| Shutdown Current Variation With Temperature | Figure 4 |
| Output Voltage vs Input Voltage for Different Load Currents | Figure 5 |
| Input Voltage vs Load Current During Power Up and Power Down | Figure 6 |
| Internal Reference Voltage | Figure 7 |
| Voltage Drop ON Rslew For Current Reference (Slew Rate / Rslew) | Figure 8 |
| Current Consumption With Temperature | Figure 9 |
Figure 5. Output Voltage vs Input Voltage for Different Load Currents
Figure 6. Input Voltage vs Load Current During Power Up and Power Down
NOTE
Figure 5 shows the dropout operation during low input conditions
Figure 6 shows the following plots