SLVSBO6B January   2013  – July 2015 TPS65090

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - Power Path Control
    6. 6.6  Electrical Characteristics - Charger
    7. 6.7  Electrical Characteristics - DC-DC Converters
    8. 6.8  Electrical Characteristics - Linear Regulators
    9. 6.9  Electrical Characteristics - Load Switches
    10. 6.10 Electrical Characteristics - Control
    11. 6.11 Timing Requirements - I2C Interface
    12. 6.12 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Always On LDOs
      2. 7.3.2 Power Path Control
      3. 7.3.3 Supply Status Outputs
      4. 7.3.4 Charger
      5. 7.3.5 DC-DC Converters
      6. 7.3.6 Load Switches
      7. 7.3.7 ADC
      8. 7.3.8 Protection
      9. 7.3.9 Interrupts
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
      1. 7.5.1 I2C Interface
        1. 7.5.1.1 F/S-Mode Protocol
        2. 7.5.1.2 H/S-Mode Protocol
    6. 7.6 Register Maps
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Front-End PMU Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Programming the Converter or Charger Output Voltage
          2. 8.2.1.2.2 Programming Input DPM Current and Charge Current
          3. 8.2.1.2.3 Output Filter Design (Inductor and Output Capacitor)
          4. 8.2.1.2.4 Inductor Selection
          5. 8.2.1.2.5 Capacitor Selection
            1. 8.2.1.2.5.1 Input Capacitor
            2. 8.2.1.2.5.2 DC-DC Converter and Charger Bootstrap Capacitors
            3. 8.2.1.2.5.3 DC-DC Converter and Charger Output Capacitors
            4. 8.2.1.2.5.4 LDO Output Capacitors
            5. 8.2.1.2.5.5 Load Switches Output Capacitors
          6. 8.2.1.2.6 Charger Battery Temperature Sensing
          7. 8.2.1.2.7 Reverse Voltage Protection
          8. 8.2.1.2.8 AC Switches
          9. 8.2.1.2.9 Battery Switches
        3. 8.2.1.3 Application Curves
      2. 8.2.2 DC-DC Converters
      3. 8.2.3 Charger
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
POWER PATH CONTROL
Voltage(2) VAC, VACS –0.3 30 V
ACP, ACN, ACS, BATG –0.3 20
Differential Voltage between ACP and ACN –0.5 0.5 V
between ACG and ACS –0.3 7
CHARGER
Voltage(2) VSYSC, VBAT, LC, SRP, SRN, STAT –0.3 20 V
FBC, TS1, TS2, VREFT –0.3 7
ENC –0.3 3.6
Differential Voltage between SRP and SRN –0.5 0.5 V
between CBC and LC –0.3 7
DCDC1
Voltage(2) VSYS1, L1 –0.3 20 V
FB1, VDCDC1 –0.3 7
EN1 –0.3 3.6
Differential Voltage between CB1 and L1 –0.3 7 V
DCDC2
Voltage(2) VSYS2, L2 –0.3 20 V
FB2, VDCDC2 –0.3 3.6
EN2 –0.3 3.6
Differential Voltage between CB2 and L2 –0.3 7 V
DCDC3
Voltage(2) VSYS3, L3 –0.3 20 V
FB3, VDCDC3 –0.3 7
EN3 –0.3 3.6
Differential Voltage between CB3 and L3 –0.3 7 V
LDO1
Voltage(2) VSYS_L1 –0.3 20 V
VLDO1, FB_L1 –0.3 7
LDO2
Voltage(2) VSYS_L2 –0.3 20 V
VLDO2, FB_L2 –0.3 3.6
FET1
Voltage(2) INFET1, VFET1 –0.3 20 V
FET2
Voltage(2) INFET2, VFET2 –0.3 6 V
FET3
Voltage(2) INFET3, VFET3 –0.3 6 V
FET4
Voltage(2) INFET4, VFET4 –0.3 6 V
FET5
Voltage(2) INFET5, VFET5 –0.3 6 V
FET6
Voltage(2) INFET6, VFET6 –0.3 6 V
FET7
Voltage(2) INFET7, VFET7 –0.3 6 V
DIGITAL INTERFACE/CONTROL
Voltage(2) SDAT, SCLK, IRQ, VCTRL, VCTRL2, VACG, VSYSG, VBATG –0.3 7 V
VREFADC, VREF –0.3 3.6
GENERAL
Temperature Operating junction, TJ –40 150 °C
Storage temperature, Tstg –65 150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to network ground terminal.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
POWER PATH CONTROL
Supply voltage at VAC 6 17 V
Differential voltage between ACP and ACN –0.2 0.2 V
CHARGER
Supply voltage at VSYSC, VBAT 6 17 V
Differential voltage between SRP and SRN –0.2 0.2 V
DCDC1
Supply voltage at VSYS1 6 17 V
DCDC2
Supply voltage at VSYS2 6 17 V
DCDC3
Supply voltage at VSYS3 6 17 V
LDO1
Supply voltage at VSYS_L1 6 17 V
LDO2
Supply voltage at VSYS_L2 6 17 V
FET1
Supply voltage at INFET1 5 17 V
FET2
Supply voltage at INFET2 4.5 5.5 V
FET3
Supply voltage at INFET3 3 5.5 V
FET4
Supply voltage at INFET4 3 5.5 V
FET5
Supply voltage at INFET5 3 5.5 V
FET6
Supply voltage at INFET6 3 5.5 V
FET7
Supply voltage at INFET7 3 5.5 V
CONTROL
Supply voltage at VCTRL2 3 5.5 V
GENERAL
Operating free-air temperature, TA –40 85 °C
Operating junction temperature, TJ –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) TPS65090A UNIT
RVN [VQFN-MR]
100 PINS
RθJA Junction-to-ambient thermal resistance 24.8 °C/W
RθJC(top) Junction-to-case(top) thermal resistance 5.6 °C/W
RθJB Junction-to-board thermal resistance 3.9 °C/W
ψJT Junction-to-top characterization parameter 0.1 °C/W
ψJB Junction-to-board characterization parameter 3.9 °C/W
RθJC(bot) Junction-to-case(bottom) thermal resistance 0.1 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics - Power Path Control

over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature range of 25°C) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VAC overvoltage disconnect 17 17.6 18.2 V
VAC overvoltage hysteresis 550 mV
VAC undervoltage lockout VAC voltage decreasing 5 5.5 6 V
VAC undervoltage lockout hysteresis 550 mV
Maximum input DPM current programming range 1000 4000 mA
(VACP - VACN) voltage to maximum input DPM current gain 100 A / V
Input DPM current regulation VACP - VACN, IACSET = 0 40 44 48 mV
VACP - VACN, IACSET = 1 36 40 44 mV
Maximum battery discharge current comparator threshold VBAT - VSRN, IBATSET = 0, TA = 25°C 17.5 20 21 mV
VBAT - VSRN, IBATSET = 1, TA = 25°C 15 17.5 18.5 mV
VACS input impedance 1000
VAC input impedance 25
Gate drive current on ACG 12 μA
Gate drive current on BATG Turnon 500 μA
Gate drive current on BATG Turnoff 25 mA
BATG turnoff delay time after adapter is detected 30 ms
Quiescent current into VAC Charging enabled, VAC = 11.5 V 2.5 5 mA
Charging disabled, VAC = 11.5 V 1 1.5 mA
Leakage current into ACP and ACN Charging disabled 80 μA
VSUPPL Supplement threshold to turn on battery switch VSRN - VACN rising 13 45 84 mV
VSUPPL_HYS Supplement mode hysteresis to turn off battery switch VSRN - VACN falling 20 mV
IACRC Reverse adapter current threshold VACN - VACP rising 45 mV
VSLEEP SLEEP mode threshold VAC – VSRN falling 20 90 150 mV
VSLEEP_HYS SLEEP mode hysteresis VAC – VSRN rising 200 mV

6.6 Electrical Characteristics - Charger

over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature range of 25°C) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CHARGER - POWER
VFBC Charger feedback voltage VSET = 00, default for T01 and T40 1.98 2 2.02 V
VSET = 01, default for T12 2.03 2.05 2.07
VSET = 10, default for T34 2.055 2.075 2.095
VSET = 11, default for T23 2.08 2.1 2.12
Leakage current into FBC 0.1 μA
VFBCR Charger feedback voltage for automatic charge restart VSET = 00, ENRECG = 1 1.925 1.950 1.975 V
VSET = 01, ENRECG = 1 1.975 2 2.025
VSET = 10, ENRECG = 1 2 2.025 2.05
VSET = 11, ENRECG = 1 2.025 2.05 2.075
ICHARGE Maximum charge current programming 1000 4000 mA
(VSRP - VSRN) voltage to maximum charge current gain 100 A / V
I2C programmable charge current ISET = 000 0%
ISET = 001 25%
ISET = 010 37.5%
ISET = 011, default for T12 and T34 battery temperature range 50%
ISET = 100 62.5%
ISET = 101 75%
ISET = 110 87.5%
ISET = 111, default for T23 battery temperature range 100%
Charge current sense regulation voltage VSRP - VSRN = 40 mV typical, TJ < 100 °C 38.5 40 42.5 mV
VSRP - VSRN = 20 mV typical, TJ < 100 °C 18.5 20 22
VSRP - VSRN = 4 mV typical, TJ < 100 °C 2.3 4 5.9
Minimum programmable charge current 100 mA
Precharge current 0.1 * ICHARGE
Termination current 0.1 * ICHARGE
Leakage current into SRN and SRP VBAT < 12 V 45 μA
Switching frequency 1360 1600 1840 kHz
RDSON High-side switch ON-resistance 25
RDSON Low-side switch ON-resistance 60
CHARGER - CONTROL
Precharge timer 1600 1800 2000 s
Fast-charge safety timer programming 2 10 h
Fast-charge safety timer accuracy 10%
I2C programmable values for fast-charge safety timer FASTTIME = 000, default setting 2 h
FASTTIME = 001 3
FASTTIME = 010 4
FASTTIME = 011 5
FASTTIME = 100 6
FASTTIME = 101 7
FASTTIME = 110 8
FASTTIME = 111 10
Battery detection discharge timer 1 s
Battery detection discharge current 5 20 mA
Battery detection discharge current after timer fault 2 mA
VFBCL Battery detection discharge feedback voltage threshold for battery OK 1.43 1.45 1.47 V
Battery feedback voltage threshold for precharge to fast-charge transition 1.43 1.45 1.47 V
Battery detection charge timer 0.5 s
Battery detection charge current sense regulation voltage VSRP - VSRN = 2 mV typical, TJ < 100 °C 0.5 2 3.8 mV
Battery detection charge feedback voltage threshold for battery OK VSET = 00 1.925 1.95 1.975 V
VSET = 01 1.975 2 2.025
VSET = 10 2 2.025 2.05
VSET = 11 2.025 2.05 2.075
Minimum battery feedback voltage for battery good detection Voltage at FBC increasing 1.44 1.5 1.54 V
Maximum battery feedback voltage for battery good detection Voltage at FBC increasing 2.18 2.25 2.28 V
Battery cell temperature measurement, ratio of VTS1,2 compared to VREFTS, I2C programming option for T1 Sensor temperature is -10°C, T_SET = 000 71.9% 72.4% 72.9%
Voltage ratio threshold hysteresis Sensor temperature is -10°C, voltage decreasing 0.2%
T1 Battery cell temperature measurement, ratio of VTS1,2 compared to VREFTS Default value, Sensor temperature is 0°C, T_SET = 001 70.4% 71% 71.5%
Voltage ratio threshold hysteresis Sensor temperature is 0°C, voltage decreasing 0.2%
T2 Battery cell temperature measurement, ratio of VTS1,2 compared to VREFTS Default value, Sensor temperature is 10°C, T_SET = 010 68.1% 68.7% 69.2%
Voltage ratio threshold hysteresis Sensor temperature is 10°C, voltage decreasing 0.4%
Battery cell temperature measurement, ratio of VTS1,2 compared to VREFTS, I2C programming option for T2 Sensor temperature is 15°C, T_SET = 011 67% 67.4% 67.9%
Voltage ratio threshold hysteresis Sensor temperature is 15°C, voltage decreasing 0.4%
Battery cell temperature measurement, ratio of VTS1,2 compared to VREFTS, I2C programming option for T3 Sensor temperature is 40°C, T_SET = 100 59.3% 59.7% 60.1%
Voltage ratio threshold hysteresis Sensor temperature is 40°C, voltage increasing 0.9%
T3 Battery cell temperature measurement, ratio of VTS1,2 compared to VREFTS Default value, Sensor temperature is 45°C, T_SET = 101 57.1% 57.6% 57.9%
Voltage ratio threshold hysteresis Sensor temperature is 45°C, voltage increasing 0.9%
Battery cell temperature measurement, ratio of VTS1,2 compared to VREFTS, I2C programming option for T3 or T4 Sensor temperature is 50°C, T_SET = 110 54.7% 55.2% 55.8%
Voltage ratio threshold hysteresis Sensor temperature is 50°C, voltage increasing 1.1%
T4 Battery cell temperature measurement, ratio of VTS1,2 compared to VREFTS Default value, Sensor temperature is 60°C, T_SET = 111 49.6% 50.1% 50.5%
Voltage ratio threshold hysteresis Sensor temperature is 60°C, voltage increasing 1.1%
Output voltage at VREFT Internally connected to VLDO2 3.3 V
Output impedance of VREFT 4
Quiescent current into VBAT Charging active 25 μA
Quiescent current into VBAT Charging suspended 150 μA
VIL ENC input low voltage 0.4 V
VIH ENC input high voltage 1.2 V
ENC input current Clamped on GND or 3.3V 0.01 0.1 μA
Charge current derating starting temperature Junction temperature increasing 100 °C
Charge current derating starting voltage VSYSC decreasing 6.7 7.3 7.6 V
Overtemperature protection 125 140 150 °C
Overtemperature hysteresis 20 °C

6.7 Electrical Characteristics - DC-DC Converters

over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature range of 25°C) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DCDC1 - POWER
Output voltage Power save mode disabled 5 5.05 5.125 V
Switch valley current limit TA = 25°C 5500 mA
High-side switch ON-resistance 20
Low-side switch ON-resistance 20
Maximum line regulation 0.5%
Maximum load regulation 0.5%
Output auto-discharge resistance 300 400 Ω
FB1 input impedance VEN1 = 1 1
Shutdown current into VSYS1 VSYS1 = 7.2 V, EN1 = 0 1 μA
DCDC1 - CONTROL
VIL EN1 input low voltage 0.4 V
VIH EN1 input high voltage 1.2 V
EN1 input current Clamped on GND or 3.3 V 0.01 0.1 μA
Overtemperature protection 140 °C
Overtemperature hysteresis 20 °C
DCDC2 - POWER
Output voltage Power save mode disabled 3.3 3.333 3.383 V
Switch valley current limit TA = 25°C 5500 mA
High-side switch ON-resistance 20
Low-side switch ON-resistance 20
Maximum line regulation 0.5%
Maximum load regulation 0.5%
Output auto-discharge resistance 300 400 Ω
FB2 input impedance VEN2 = 1 1
Shutdown current into VSYS2 VSYS2 = 7.2 V, EN2 = 0 1 μA
DCDC2 - CONTROL
VIL EN2 input low voltage 0.4 V
VIH EN2 input high voltage 1.2 V
EN2 input current Clamped on GND or 3.3 V 0.01 0.1 μA
Overtemperature protection 140 °C
Overtemperature hysteresis 20 °C
DCDC3 - POWER
Feedback voltage 792 800 808 mV
Switch valley current limit TA = 25°C 4200 mA
High-side switch ON-resistance 20
Low-side switch ON-resistance 20
Maximum line regulation 0.5%
Maximum load regulation 0.5%
Output auto-discharge resistance 300 400 Ω
Leakage current into FB3 0.1 μA
Shutdown current into VSYS3 VSYS3 = 7.2 V, EN3 = 0 1 μA
DCDC3 - CONTROL
VIL EN3 input low voltage 0.4 V
VIH EN3 input high voltage 1.2 V
EN3 input current Clamped on GND or 3.3 V 0.01 0.1 μA
Overtemperature protection 140 °C
Overtemperature hysteresis 20 °C

6.8 Electrical Characteristics - Linear Regulators

over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature range of 25°C) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LDO1
Output voltage IOUTLDO1 = 1 mA 4.90 4.95 5 V
LDO1 current limit TA = 25°C 30 50 120 mA
LDO1 maximum output current DCDC1 active (bypass switch turned on), VSYS = 7.5 V 120 mA
Maximum line regulation 0.5%
Maximum load regulation 0.5%
FB_L1 input impedance 1
Quiescent current into VSYS_L1 and VSYS_L2 DCDC1 and DCDC2 are enabled 35 μA
Overtemperature protection 140 °C
Overtemperature hysteresis 20 °C
LDO2
Output voltage IOUTLDO2 = 1 mA 3.233 3.267 3.3 V
LDO2 current limit TA = 25°C 30 50 120 mA
LDO2 maximum output current DCDC2 active (bypass switch turned on), VSYS = 7.5 V 120 mA
Maximum line regulation 0.5%
Maximum load regulation 0.5%
FB_L2 input impedance 1
Quiescent current into VSYS_L2 and VSYS_L1 DCDC1 and DCDC2 are enabled 35 μA
Overtemperature protection 140 °C
Overtemperature hysteresis 20 °C

6.9 Electrical Characteristics - Load Switches

over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature range of 25°C) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
FET1
Overcurrent detect threshold TA = 25°C 1000 1200 mA
Switch ON-resistance 120
Output auto-discharge resistance 800 Ω
Maximum output voltage slew rate after turnon 0.1 0.5 1 V / μs
Switch current limit - time-out Multiplier set to 1, WTFET1 = 00 200 250 μs
Switch current limit - time-out Multiplier set to 4, WTFET1 = 01 800 1000 μs
Switch current limit - time-out Multiplier set to 8, WTFET1 = 10 1600 2000 μs
Switch current limit - time-out Multiplier set to 16, WTFET1 = 11 3200 4000 μs
Leakage current into INFET1 FET1 disabled, VFET1 = 0 V 1 μA
FET2
Overcurrent detect threshold TA = 25°C 200 240 mA
Switch ON-resistance 500
Output auto-discharge resistance 300 Ω
Maximum output voltage slew rate after turnon 0.1 0.5 1 V / μs
Switch current limit - time-out Multiplier set to 1, WTFET2 = 00 200 250 μs
Switch current limit - time-out Multiplier set to 4, WTFET2 = 01 800 1000 μs
Switch current limit - time-out Multiplier set to 8, WTFET2 = 10 1600 2000 μs
Switch current limit - time-out Multiplier set to 16, WTFET2 = 11 3200 4000 μs
Shutdown current into INFET2 FET2 disabled, VFET2 = 0 V 5 μA
Reverse leakage current FET disabled, VFET2 > INFET2 10 μA
FET3
Overcurrent detect threshold TA = 25°C 3000 3600 mA
Switch ON-resistance 45
Output auto-discharge resistance 300 Ω
Maximum output voltage slew rate after turnon 0.1 0.5 1 V / μs
Switch current limit - time-out Multiplier set to 1, WTFET3 = 00 200 250 μs
Switch current limit - time-out Multiplier set to 4, WTFET3 = 01 800 1000 μs
Switch current limit - time-out Multiplier set to 8, WTFET3 = 10 1600 2000 μs
Switch current limit - time-out Multiplier set to 16, WTFET3 = 11 3200 4000 μs
Leakage current into INFET3 FET3 disabled, VFET3 = 0 V 3 μA
FET4
Overcurrent detect threshold TA = 25°C 1000 1200 mA
Switch ON-resistance 80
Output auto-discharge resistance 300 Ω
Maximum output voltage slew rate after turnon 0.1 0.5 1 V / μs
Switch current limit - time-out Multiplier set to 1, WTFET4 = 00 200 250 μs
Switch current limit - time-out Multiplier set to 4, WTFET4 = 01 800 1000 μs
Switch current limit - time-out Multiplier set to 8, WTFET4 = 10 1600 2000 μs
Switch current limit - time-out Multiplier set to 16, WTFET4 = 11 3200 4000 μs
Leakage current into INFET4 FET4 disabled, VFET4 = 0 V 1 μA
FET5
Overcurrent detect threshold TA = 25°C 1000 1200 mA
Switch ON-resistance 80
Output auto-discharge resistance 300 Ω
Maximum output voltage slew rate after turnon 0.1 0.5 1 V / μs
Switch current limit - time-out Multiplier set to 1, WTFET5 = 00 200 250 μs
Switch current limit - time-out Multiplier set to 4, WTFET5 = 01 800 1000 μs
Switch current limit - time-out Multiplier set to 8, WTFET5 = 10 1600 2000 μs
Switch current limit - time-out Multiplier set to 16, WTFET5 = 11 3200 4000 μs
Leakage current into INFET5 FET5 disabled, VFET5 = 0 V 1 μA
FET6
Overcurrent detect threshold TA = 25°C 1000 1200 mA
Switch ON-resistance 80
Output auto-discharge resistance 300 Ω
Maximum output voltage slew rate after turnon 0.1 0.5 1 V / μs
Switch current limit - time-out Multiplier set to 1, WTFET6 = 00 200 250 μs
Switch current limit - time-out Multiplier set to 4, WTFET6 = 01 800 1000 μs
Switch current limit - time-out Multiplier set to 8, WTFET6 = 10 1600 2000 μs
Switch current limit - time-out Multiplier set to 16, WTFET6 = 11 3200 4000 μs
Leakage current into INFET6 FET6 disabled, VFET6 = 0 V 1 μA
FET7
Overcurrent detect threshold TA = 25°C 1000 1200 mA
Switch ON-resistance 80
Output auto-discharge resistance 300 Ω
Maximum output voltage slew rate after turnon 0.1 0.5 1 V / μs
Switch current limit - time-out Multiplier set to 1, WTFET7 = 00 200 250 μs
Switch current limit - time-out Multiplier set to 4, WTFET7 = 01 800 1000 μs
Switch current limit - time-out Multiplier set to 8, WTFET7 = 10 1600 2000 μs
Switch current limit - time-out Multiplier set to 16, WTFET7 = 11 3200 4000 μs
Leakage current into INFET7 FET7 disabled, VFET7 = 0 V 1 μA

6.10 Electrical Characteristics - Control

over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature range of 25°C) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SYSTEM - CONTROL
VBATG, VACG, VSYSG, IRQ output low voltage IVxxxGL = 1 mA 0.04 0.4 V
VBATG, VACG, VSYSG, IRQ output leakage current 0.01 0.4 μA
STAT output low voltage ISTAT = 1 mA 0.04 0.4 V
STAT output low voltage ISTAT = 5 mA 0.6 V
STAT output leakage current 0.01 0.1 μA
System undervoltage lockout threshold VSYS voltage decreasing 5.5 5.6 5.7 V
System undervoltage lockout threshold hysteresis 300 mV
LDO undervoltage lockout threshold VSYS voltage decreasing 4.4 4.6 4.7 V
LDO undervoltage lockout threshold hysteresis 300 mV
VIL SDA, SCL input low voltage 0.4 V
VIH SDA, SCL input high voltage 1.2 V
SDA, SCL input current Clamped on GND or 3.3 V 0.01 0.3 μA
SDA output low voltage ISDA = 5 mA 0.04 0.4 V
AD - CONVERTER
ADC resolution 10 Bits
Differential linearity error ±1 LSB
Offset error 1 5 LSB
Offset error, voltage 12.7 mV
Gain error ±8 LSB
Sampling time 150 μs
Conversion time 20 μs
Wait time after enable Time needed to stabilize the internal voltages 10 ms
Quiescent current, ADC enabled by I2C includes current needed for I2C block 500 μA
AD - CONVERTER - MEASUREMENT RANGES
Voltage on VAC 0 17 V
Battery voltage VBAT 0 17 V
Input current IAC VACP - VACN is measured 0 33 mV
Battery charge current IBAT VSRP - VSRN is measured 0 40 mV
DCDC1 output current IDCDC1 0 4 A
DCDC2 output current IDCDC2 0 4 A
DCDC3 output current IDCDC3 0 4 A
FET1 output current IFET1 0 1.1 A
FET2 output current IFET2 0 220 mA
FET3 output current IFET3 0 3.3 A
FET4 output current IFET4 0 1.1 A
FET5 output current IFET5 0 1.1 A
FET6 output current IFET6 0 1.1 A
FET7 output current IFET7 0 1.1 A
AD - CONVERTER - SIGNAL CONDITIONING
Voltage sense error referenced to maximum value 2%
Current sense error referenced to maximum value for IAC and IBAT 20%
Current sense error referenced to maximum value for DC-DC converter currents Measurements at VSYS > 7.2 V, low side switch duty cycle at DCDC1-3 > 30% 15%
Current sense error referenced to maximum value for load switch currents 10%

6.11 Timing Requirements - I2C Interface

over recommended free-air temperature range and over recommended input voltage range (unless otherwise noted)(1)
MIN MAX UNIT
f(SCL) SCL clock frequency Standard-mode 100 kHz
Fast-mode 400 kHz
Fast-mode Plus 1000 kHz
High-speed mode, Cb – 100 pF maximum 3.4 MHz
High-speed mode, Cb – 400 pF maximum(2) 1.7 MHz
tBUF Bus free time between a STOP and START condition Standard-mode 4.7 μs
Fast-mode 1.3 μs
Fast-mode Plus 0.5 μs
tHD; STA Hold time (repeated) START condition Standard-mode 4 μs
Fast-mode 600 ns
Fast-mode Plus 260 ns
High-speed mode 160 ns
tLOW LOW period of the SCL clock Standard-mode 4.7 μs
Fast-mode 1.3 μs
Fast-mode Plus 0.5 μs
High-speed mode, Cb – 100 pF maximum 160 ns
High-speed mode, Cb – 400 pF maximum(2) 320 ns
tHIGH HIGH period of the SCL clock Standard-mode 4 μs
Fast-mode 600 ns
Fast-mode Plus 260 ns
High-speed mode, Cb – 100 pF maximum 60 ns
High-speed mode, Cb – 400 pF maximum(2) 120 ns
tSU; STA Setup time for a repeated START condition Standard-mode 4.7 μs
Fast-mode 600 ns
Fast-mode Plus 260 ns
High-speed mode 160 ns
tSU; DAT Data setup time Standard-mode 250 ns
Fast-mode 100 ns
Fast-mode Plus 50 ns
High-speed mode 10 ns
tHD; DAT Data hold time Standard-mode 1 3450 ns
Fast-mode 1 900 ns
Fast-mode Plus 1 ns
High-speed mode, Cb – 100 pF maximum 1(3) 70 ns
High-speed mode, Cb – 400 pF maximum(2) 1(3) 150 ns
trCL Rise time of SCL signal Standard-mode 1000 ns
Fast-mode 20 300 ns
Fast-mode Plus 120 ns
High-speed mode, Cb – 100 pF maximum 10 40 ns
High-speed mode, Cb – 400 pF maximum(2) 20 80 ns
trCL1 Rise time of SCL signal after a repeated START condition and after an acknowledge bit Standard-mode 1000 ns
Fast-mode 20 300 ns
Fast-mode Plus 120 ns
High-speed mode, CB – 100 pF maximum 10 80 ns
High-speed mode, CB – 400 pF maximum(2) 20 160 ns
tfCL Fall time of SCL signal Standard-mode 300 ns
Fast-mode 20 × (VDD / 5.5 V) 300 ns
Fast-mode Plus 20 × (VDD / 5.5 V) 120 ns
High-speed mode, Cb – 100 pF maximum 10 40 ns
High-speed mode, Cb – 400 pF maximum(2) 20 80 ns
trDA Rise time of SDA signal Standard-mode 1000 ns
Fast-mode 20 300 ns
Fast-mode Plus 120 ns
High-speed mode, Cb – 100 pF maximum 10 80 ns
High-speed mode, Cb – 400 pF maximum(2) 20 160 ns
tfDA Fall time of SDA signal Standard-mode 300 ns
Fast-mode 20 × (VDD / 5.5 V) 300 ns
Fast-mode Plus 20 × (VDD / 5.5 V) 120 ns
High-speed mode, Cb – 100 pF maximum 10 80 ns
High-speed mode, Cb – 400 pF maximum(2) 20 160 ns
tSU; STO Setup time for STOP condition Standard-mode 4 μs
Fast-mode 600 ns
Fast-mode Plus 260 ns
High-speed mode 160 ns
Cb Capacitive load for SDA and SCL 400 pF
(1) All values referred to VIH min and VIH max levels.
(2) For bus line loads Cb from 100 pF to 400 pF, the timing parameters must be linearly interpolated.
(3) A device must internally provide a data hold time to bridge the undefined part between VIH and VIL of the falling edge of the SCLH signal. An input circuit with a threshold as low as possible for the falling edge of the SCLH signal minimizes this hold time.
TPS65090 ser_if_tim_lvsAU3.gifFigure 1. Serial Interface Timing Diagram

6.12 Typical Characteristics

Table of Graphs

FIGURE
Efficiency vs Output Current, DCDC1, VOUT = 5 V Figure 2
vs Output Current, DCDC2, VOUT = 3.3 V Figure 3
vs Output Current, DCDC3, VOUT = 1 V Figure 4
vs Output Current, DCDC3, VOUT = 1.35 V Figure 5
vs Output Current, DCDC3, VOUT = 1.8 V Figure 6
vs Output Current, DCDC3, VOUT = 3.3 V Figure 7
vs Output Current, DCDC3, VOUT = 4 V Figure 8
vs Output Current, DCDC3, VOUT = 5 V Figure 9
Efficiency vs Output Current, Charger, VOUT = 8.4 V Figure 10
vs Output Current, Charger, VOUT = 12.6 V Figure 11
Efficiency vs Input Voltage, DCDC1, VOUT = 5 V Figure 12
vs Input Voltage, DCDC2, VOUT = 3.3 V Figure 13
vs Input Voltage, DCDC3, VOUT = 1 V Figure 14
vs Input Voltage, DCDC3, VOUT = 1.35 V Figure 15
vs Input Voltage, DCDC3, VOUT = 1.8 V Figure 16
vs Input Voltage, DCDC3, VOUT = 3.3 V Figure 17
vs Input Voltage, DCDC3, VOUT = 4 V Figure 18
vs Input Voltage, DCDC3, VOUT = 5 V Figure 19
Efficiency vs Battery Voltage, Charger, IOUT = 1 A Figure 20
vs Battery Voltage, Charger, IOUT = 2 A Figure 21
vs Battery Voltage, Charger, IOUT = 3 A Figure 22
vs Battery Voltage, Charger, IOUT = 4 A Figure 23
Switching frequency vs Output Current, DCDC1, VOUT = 5 V Figure 24
vs Output Current, DCDC2, VOUT = 3.3 V Figure 25
vs Output Current, DCDC3, VOUT = 1.35 V Figure 26
vs Input Voltage, DCDC1, VOUT = 5 V Figure 27
vs Input Voltage, DCDC2, VOUT = 3.3 V Figure 28
vs Input Voltage, DCDC3, VOUT = 1.35 V Figure 29
Inductor current ripple vs Output Current, DCDC1, VOUT = 5 V Figure 30
vs Output Current, DCDC2, VOUT = 3.3 V Figure 31
vs Output Current, DCDC3, VOUT = 1.35 V Figure 32
vs Input Voltage, DCDC1, VOUT = 5 V Figure 33
vs Input Voltage, DCDC2, VOUT = 3.3 V Figure 34
vs Input Voltage, DCDC3, VOUT = 1.35 V Figure 35
TPS65090 effIoutDCDC1_lvsAU3.gif
Figure 2. Efficiency vs Output Current
TPS65090 effIoutDCDC3_10_lvsBO6.gif
Figure 4. Efficiency vs Output Current
TPS65090 effIoutDCDC3_18_lvsBO6.gif
Figure 6. Efficiency vs Output Current
TPS65090 effIoutDCDC3_40_lvsBO6.gif
Figure 8. Efficiency vs Output Current
TPS65090 effIoutCHG_84_lvsAU3.gif
Figure 10. Efficiency vs Output Current
TPS65090 effVinDCDC1_50_lvsAU3.gif
Figure 12. Efficiency vs Input Voltage
TPS65090 effVinDCDC3_10_lvsBO6.gif
Figure 14. Efficiency vs Input Voltage
TPS65090 effVinDCDC3_18_lvsBO6.gif
Figure 16. Efficiency vs Input Voltage
TPS65090 effVinDCDC3_40_lvsBO6.gif
Figure 18. Efficiency vs Input Voltage
TPS65090 effVbattCHG_10_lvsAU3.gif
Figure 20. Efficiency vs Battery Voltage
TPS65090 effVbattCHG_30_lvsAU3.gif
Figure 22. Efficiency vs Battery Voltage
TPS65090 freqIoutDCDC1_lvsBO6.gif
Figure 24. Switching Frequency vs Output Current
TPS65090 freqIoutDCDC3_135_lvsBO6.gif
Figure 26. Switching Frequency vs Output Current
TPS65090 freqVinDCDC2_lvsBO6.gif
Figure 28. Switching Frequency vs Input Voltage
TPS65090 IndrippleIoutDCDC1_lvsBO6.gif
Figure 30. Inductor Current Ripple vs Output Current
TPS65090 IndrippleIoutDCDC3_135_lvsBO6.gif
Figure 32. Inductor Current Ripple vs Output Current
TPS65090 IndrippleVinDCDC2_lvsBO6.gif
Figure 34. Inductor Current Ripple vs Input Voltage
TPS65090 effIoutDCDC2_lvsAU3.gif
Figure 3. Efficiency vs Output Current
TPS65090 effIoutDCDC3_135_lvsBO6.gif
Figure 5. Efficiency vs Output Current
TPS65090 effIoutDCDC3_33_lvsBO6.gif
Figure 7. Efficiency vs Output Current
TPS65090 effIoutDCDC3_50_lvsBO6.gif
Figure 9. Efficiency vs Output Current
TPS65090 effIoutCHG_126_lvsAU3.gif
Figure 11. Efficiency vs Output Current
TPS65090 effVinDCDC2_33_lvsAU3.gif
Figure 13. Efficiency vs Input Voltage
TPS65090 effVinDCDC3_135_lvsBO6.gif
Figure 15. Efficiency vs Input Voltage
TPS65090 effVinDCDC3_33_lvsBO6.gif
Figure 17. Efficiency vs Input Voltage
TPS65090 effVinDCDC3_50_lvsBO6.gif
Figure 19. Efficiency vs Input Voltage
TPS65090 effVbattCHG_20_lvsAU3.gif
Figure 21. Efficiency vs Battery Voltage
TPS65090 effVbattCHG_40_lvsAU3.gif
Figure 23. Efficiency vs Battery Voltage
TPS65090 freqIoutDCDC2_lvsBO6.gif
Figure 25. Switching Frequency vs Output Current
TPS65090 freqVinDCDC1_lvsBO6.gif
Figure 27. Switching Frequency vs Input Voltage
TPS65090 freqVinDCDC3_135_lvsBO6.gif
Figure 29. Switching Frequency vs Input Voltage
TPS65090 IndrippleIoutDCDC2_lvsBO6.gif
Figure 31. Inductor Current Ripple vs Output Current
TPS65090 IndrippleVinDCDC1_lvsBO6.gif
Figure 33. Inductor Current Ripple vs Input Voltage
TPS65090 IndrippleVinDCDC3_135_lvsBO6.gif
Figure 35. Inductor Current Ripple vs Input Voltage