SWCS032F October   2008  – July 2014 TPS65950

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Terminal Configuration and Functions
    1. 3.1 Corner Balls
    2. 3.2 Ball Characteristics
    3. 3.3 Signal Description
  4. 4Specifications
    1. 4.1 Absolute Maximum Ratings
    2. 4.2 Handling Ratings
    3. 4.3 Recommended Operating Conditions
    4. 4.4 Digital I/O Electrical Characteristics
    5. 4.5 Thermal Resistance Characteristics for ZXN Package
    6. 4.6 Minimum Voltages and Associated Currents
    7. 4.7 Timing Requirements and Switching Characteristics
      1. 4.7.1 Timing Parameters
      2. 4.7.2 Target Frequencies
      3. 4.7.3 I2C Timing
      4. 4.7.4 Audio Interface: TDM/I2S Protocol
        1. 4.7.4.1 I2S Right- and Left-Justified Data Format
        2. 4.7.4.2 TDM Data Format
      5. 4.7.5 Voice/Bluetooth PCM Interfaces
      6. 4.7.6 JTAG Interfaces
  5. 5Detailed Description
    1. 5.1  Power Module
      1. 5.1.1 Power Providers
        1. 5.1.1.1  VDD1 DC-DC Regulator
          1. 5.1.1.1.1 VDD1 DC-DC Regulator Characteristics
          2. 5.1.1.1.2 External Components and Application Schematic
        2. 5.1.1.2  VDD2 DC-DC Regulator
          1. 5.1.1.2.1 VDD2 DC-DC Regulator Characteristics
          2. 5.1.1.2.2 External Components and Application Schematic
        3. 5.1.1.3  VIO DC-DC Regulator
          1. 5.1.1.3.1 VIO DC-DC Regulator Characteristics
          2. 5.1.1.3.2 External Components and Application Schematic
        4. 5.1.1.4  VDAC LDO Regulator
        5. 5.1.1.5  VPLL1 LDO Regulator
        6. 5.1.1.6  VPLL2 LDO Regulator
        7. 5.1.1.7  VMMC1 LDO Regulator
        8. 5.1.1.8  VMMC2 LDO Regulator
        9. 5.1.1.9  VSIM LDO Regulator
        10. 5.1.1.10 VAUX1 LDO Regulator
        11. 5.1.1.11 VAUX2 LDO Regulator
        12. 5.1.1.12 VAUX3 LDO Regulator
        13. 5.1.1.13 VAUX4 LDO Regulator
        14. 5.1.1.14 Internal LDOs
        15. 5.1.1.15 CP
        16. 5.1.1.16 USB LDO Short-Circuit Protection Scheme
      2. 5.1.2 Power References
      3. 5.1.3 Power Control
        1. 5.1.3.1 Backup Battery Charger
        2. 5.1.3.2 Battery Monitoring and Threshold Detection
          1. 5.1.3.2.1 Power On/Power Off and Backup Conditions
        3. 5.1.3.3 VRRTC LDO Regulator
      4. 5.1.4 Power Consumption
      5. 5.1.5 Power Management
        1. 5.1.5.1 Boot Modes
        2. 5.1.5.2 Process Modes
          1. 5.1.5.2.1 C027.0 Mode
          2. 5.1.5.2.2 C021.M Mode
        3. 5.1.5.3 Power-On Sequence
          1. 5.1.5.3.1 Timings Before Sequence_Start
          2. 5.1.5.3.2 OMAP2 Power-On Sequence
          3. 5.1.5.3.3 OMAP3 Power-On Sequence
          4. 5.1.5.3.4 Power On in Slave_C021_Generic Mode
        4. 5.1.5.4 Power-Off Sequence
          1. 5.1.5.4.1 Power-Off Sequence in Master Modes
    2. 5.2  Real-Time Clock and Embedded Power Controller
      1. 5.2.1 RTC
        1. 5.2.1.1 Backup Battery
      2. 5.2.2 EPC
    3. 5.3  Audio/Voice Module
      1. 5.3.1 Audio/Voice Downlink (RX) Module
        1. 5.3.1.1  Earphone Output
          1. 5.3.1.1.1 Earphone Output Characteristics
          2. 5.3.1.1.2 External Components and Application Schematic
        2. 5.3.1.2  8-Ω Stereo Hands-Free
          1. 5.3.1.2.1 8-Ω Stereo Hands-Free Output Characteristics
            1. 5.3.1.2.1.1 Short-Circuit Protection
          2. 5.3.1.2.2 External Components and Application Schematic
        3. 5.3.1.3  Headset
          1. 5.3.1.3.1 Headset Output Characteristics
          2. 5.3.1.3.2 External Components and Application Schematic
        4. 5.3.1.4  Headset Pop-Noise Attenuation
        5. 5.3.1.5  Predriver for External Class-D Amplifier
          1. 5.3.1.5.1 Predriver Output Characteristics
          2. 5.3.1.5.2 External Components and Application Schematic
        6. 5.3.1.6  Vibrator H-Bridge
          1. 5.3.1.6.1 Vibrator H-Bridge Output Characteristics
          2. 5.3.1.6.2 External Components and Application Schematic
        7. 5.3.1.7  Carkit Output
        8. 5.3.1.8  Digital Audio Filter Module
        9. 5.3.1.9  Digital Voice Filter Module
          1. 5.3.1.9.1 Voice Downlink Filter (Sampling Frequency at 8 kHz)
          2. 5.3.1.9.2 Voice Downlink Filter (Sampling Frequency at 16 kHz)
        10. 5.3.1.10 Boost Stage
      2. 5.3.2 Audio/Voice Uplink (TX) Module
        1. 5.3.2.1  Microphone Bias Module
          1. 5.3.2.1.1 Analog Microphone Bias Module Characteristics
          2. 5.3.2.1.2 External Components and Application Schematic
          3. 5.3.2.1.3 Digital Microphone Bias Module Characteristics
          4. 5.3.2.1.4 Silicon Microphone Characteristics
        2. 5.3.2.2  Stereo Differential Input
        3. 5.3.2.3  Headset Differential Input
        4. 5.3.2.4  FM Radio/Auxiliary Stereo Input
          1. 5.3.2.4.1 External Components
        5. 5.3.2.5  PDM Interface for Digital Microphones
        6. 5.3.2.6  Uplink Characteristics
        7. 5.3.2.7  Microphone Amplification Stage
        8. 5.3.2.8  Carkit Input
        9. 5.3.2.9  Digital Audio Filter Module
        10. 5.3.2.10 Digital Voice Filter Module
          1. 5.3.2.10.1 Voice Uplink Filter (Sampling Frequency at 8 kHz)
          2. 5.3.2.10.2 Voice Uplink Filter (Sampling Frequency at 16 kHz)
    4. 5.4  USB HS 2.0 OTG Transceiver
      1. 5.4.1 USB Features
      2. 5.4.2 USB Transceiver
        1. 5.4.2.1 MCPC Carkit Port Timing
        2. 5.4.2.2 USB-CEA Carkit Port Timing
        3. 5.4.2.3 HS USB Port Timing
        4. 5.4.2.4 PHY Electrical Characteristics
          1. 5.4.2.4.1  5-V Tolerance
          2. 5.4.2.4.2  LS/FS Single-Ended Receivers
          3. 5.4.2.4.3  LS/FS Differential Receiver
          4. 5.4.2.4.4  LS/FS Differential Transmitter
          5. 5.4.2.4.5  HS Differential Receiver
          6. 5.4.2.4.6  HS Differential Transmitter
          7. 5.4.2.4.7  CEA/MCPC/UART Driver
          8. 5.4.2.4.8  Pullup/Pulldown Resistors
          9. 5.4.2.4.9  PHY DPLL Electrical Characteristics
          10. 5.4.2.4.10 PHY Power Consumption
        5. 5.4.2.5 OTG Electrical Characteristics
          1. 5.4.2.5.1 OTG VBUS Electrical
          2. 5.4.2.5.2 OTG ID Electrical
    5. 5.5  Battery Interface
      1. 5.5.1 General Description
        1. 5.5.1.1 Battery Charger Interface Overview
        2. 5.5.1.2 Battery Backup Overview
      2. 5.5.2 Typical Application Schematics
        1. 5.5.2.1 Functional Configurations
        2. 5.5.2.2 In-Rush Current Limitation Schematic
        3. 5.5.2.3 Configuration With BCI Not Used
      3. 5.5.3 Electrical Characteristics
        1. 5.5.3.1 Main Charge
        2. 5.5.3.2 Precharge
        3. 5.5.3.3 Constant Voltage Mode
      4. 5.5.4 Charge Sequence Timing Diagram
      5. 5.5.5 CEA Charger Type
    6. 5.6  MADC
      1. 5.6.1 General Description
      2. 5.6.2 Main Electrical Characteristics
      3. 5.6.3 Channel Voltage Input Range
        1. 5.6.3.1 Sequence Conversion Time (Real-Time or Nonaborted Asynchronous)
    7. 5.7  LED Drivers
      1. 5.7.1 General Description
    8. 5.8  Keyboard
      1. 5.8.1 Keyboard Connection
    9. 5.9  Clock Specifications
      1. 5.9.1 Features
      2. 5.9.2 Input Clock Specifications
        1. 5.9.2.1 Clock Source Requirements
        2. 5.9.2.2 High-Frequency Input Clock
        3. 5.9.2.3 32-kHz Input Clock
          1. 5.9.2.3.1 External Crystal Description
          2. 5.9.2.3.2 External Clock Description
      3. 5.9.3 Output Clock Specifications
        1. 5.9.3.1 32KCLKOUT Output Clock
        2. 5.9.3.2 HFCLKOUT Output Clock
        3. 5.9.3.3 Output Clock Stabilization Time
    10. 5.10 Debouncing Time
    11. 5.11 External Components
  6. 6Device and Documentation Support
    1. 6.1 Device Support
      1. 6.1.1 Development Support
      2. 6.1.2 Device Nomenclature
    2. 6.2 Documentation Support
    3. 6.3 Community Resources
    4. 6.4 Trademarks
    5. 6.5 Electrostatic Discharge Caution
    6. 6.6 Export Control Notice
    7. 6.7 Glossary
    8. 6.8 Additional Acronyms

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • ZXN|209
Thermal pad, mechanical data (Package|Pins)
Orderable Information

4 Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)
Parameter Test Conditions Min Typ Max Unit
Main battery supply voltage(1) 2.1 4.5 V
Voltage on any input Where supply represents the voltage applied to the power supply pin associated with the input 0.0 1.0*Supply V
Storage temperature range –55 125 °C
Ambient temperature range –40 85 °C
Junction temperature (TJ) At 1.4W (Theta JB 11°C/W 2S2P board) 105 °C
Junction temperature (TJ) for parametric compliance –40 105 °C
(1) The product can tolerate voltage spikes of 5.2 V for a total duration of 10 milliseconds.

4.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –45 150 °C
VESD Electrostatic discharge (ESD) performance: Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001(1) Internal pins –1 1 kV
External pins(3) –2 2
Charged Device Model (CDM),
per JESD22-C101(2)
All pins –500 500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
(3) List of external pins: VAC, VBUS, DP/UART3.RXD, DN/UART3.TXD, ID, VPLL1.OUT, VMMC1.OUT, VMMC2.OUT, VSIM.OUT.

4.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
Parameter Min Typ Max Unit
Main battery supply voltage 2.7(1) 3.6 4.5 V
Backup battery supply voltage 1.8 3.2 3.3 V
Ambient temperature range –40 85 °C
(1) 2.7 V is the minimum threshold for the battery at which the device will turn OFF. However, the minimum voltage at which the device will power ON is 3.2 V ±100 mV (if PWRON does not have a switch and is connected to VBAT) considering battery plug as the device switch on event. If PWRON has a switch then 3.2 V is the minimum for the device to turn ON.

4.4 Digital I/O Electrical Characteristics(1)

Pin Name VOL (V) VOH (V) VIL (V) VIH (V) Max Freq (MHz) Load (pF) Output Mode Rise Time (ns) Fall Time (ns)
Min Max Min Max Min Max Min Max
GPIO0/CD1 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 33 30 5.2 5.2
JTAG.TDO
GPIO0/CD2 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 33 30 5.2 5.2
JTAG.TMS
GPIO2 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 3 30 5.2 5.2
Test1
GPIO15 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 3 30 5.2 5.2
Test2
GPIO16 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 3 30 5.2 5.2
PWM0
Test3
GPIO17 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 3 30 5.2 5.2
VIBRA.SYNC
PWM1
Test4
START.ADC 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 6 16.7 16.7
SYSEN 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 5.2 5.2
CLKEN 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
CLKEN2 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
CLKREQ 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.3 33.3
INT1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
INT2 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
NRESPWRON 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
NRESWARM 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
PWRON 0 0.35×1.8V 0.65×1.8V VBAT 3 33.3 33.3
NSLEEP1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.3 33.3
NSLEEP2 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.3 33.3
CLK256FS 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 12.288 30 16.3 16.3
VMODE1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.3 33.3
BOOT0 0 RL 3 33.3 33.3
BOOT1 0 RL 3 33.3 33.3
REGEN 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
MSECURE 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.3 33.3
I2C.SR.SDA 0 0.4 –0.5 0.3×RL 0.7×RL RL+0.5 3.4 Up to 400
VMODE2 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3.4 29.4 29.4
I2C.SR.SCL 0 0.4 –0.5 0.3×RL 0.7×RL RL+0.5 3.4 10.0 10.0
I2C.CNTL.SDA 0 0.4 –0.5 0.3×RL 0.7×RL RL+0.5 3.4 Up to 400
I2C.CNTL.SCL 0 0.4 –0.5 0.3×RL 0.7×RL RL+0.5 3.4 10.0 10.0
PCM.VCK 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 1 30 100.0 33.0
PCM.VDR 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 1 30 100.0 100.0
PCM.VDX 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 1 30 100.0 33.0
PCM.VFS 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 1 30 33.0 33.0
I2S.CLK 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 6.5 30 33.0 33.0
I2S.SYNC 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 6.5 30 33.0 33.0
I2S.DIN 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3.25 30 33.0 33.0
I2S.DOUT 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3.25 30 29.0 29.0
UART1.TXD 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.0 33.0
GPIO8 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.0 33.0
UART1.RXD
RTSO/CLD64K.OUT/
BERCLK.OUT
0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.0 33.0
CTSI/BERDATA.OUT 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.0 33.0
MANU 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.0 33.0
32KCLKOUT 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.032 30 16 16
HFCLKOUT 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 38.4 30 2.6 2.6
UCLK 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 60 10 1.0 1.0
STP 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO9
DIR 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO10
NXT 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO11
DATA0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
UART4.TXD
DATA1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
UART4.RXD
DATA2 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
UART4.RTSI
DATA3 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
UART4.CTSO
GPIO12 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
DATA4 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO14
DATA5 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO3
DATA6 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO4
DATA7 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO5
Test.RESET 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.0 33.0
Test 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 29.0 29.0
JTAG.TDI/ BERDATA 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.0 33.0
JTAG.TCK/ BERDATA 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.0 33.0
GPIO13 0 0.45 RL–0.45 RL 0 0.35×RL 0.35×RL 3 30 33.3 33.3
LEDSYNC
KPD.C0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C2 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C3 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C4 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C5 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C6 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C7 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.R0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R2 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R3 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R4 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R5 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R6 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R7 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
GPIO16 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
DIG.MIC.CLK0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 2.4 30 41.7 41.7
BT.PCM.VDX 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 1 30 100.0 100.0
GPIO17 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
DIG.MIC.CLK1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 2.4 30 41.7 41.7
BT.PCM.VDX 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 1 30 100.0 100.0
RFID.EN
(1)
  • RL: Reference level voltage applied to the I/O cell
  • VOL: Low-level output voltage
  • VOH: High-level output voltage
  • VIL: Low-level input voltage
  • VIH: High-level input voltage

4.5 Thermal Resistance Characteristics for ZXN Package

NAME DESCRIPTION °C/W(1)(2) AIR FLOW (m/s)(3)
JC Junction-to-case (top) 12.9 0.00
JB Junction-to-board 11.2 0.00
JA
(High k PCB)
Junction-to-free air 37.6 0.00
PsiJT Junction-to-package top 0.2 0.00
PsiJB Junction-to-board 9.5 0.00
(1) °C/W = degrees Celsius per watt.
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:
  • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
  • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
  • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
  • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
(3) m/s = meters per second.

4.6 Minimum Voltages and Associated Currents

Category Pin and Module Maximum Current Specified (mA) Output Voltage (V) VBAT Minimum (V)
VBAT pin name VDD_VPLLA3R_IN_6POV 340
Internal module supplied VPLL1 (LDO) 40 1.0 / 1.2 / 1.3 / 1.8 / 2.8 / 3.0 Maximum
(2.7, output voltage selected + 250 mV)
VPLL2 (LDO) 100 0.7 / 1.0 / 1.2 / 1.3 / 1.5 / 1.8 / 1.85 / 2.5 / 2.6 / 2.8 / 2.85 / 3.0 / 3.15 Maximum
(2.7, output voltage selected + 250 mV)
VAUX3 (LDO) 200 1.5 / 1.8 / 2.5 / 2.8 / 3.0 Maximum
(2.7, output voltage selected + 250 mV)
VDD1 core (DCDC) < 1 2.7
VDD2 core (DCDC) < 1 2.7
SYSPOR (power ref) < 1 2.7
PBIAS (power ref) < 1 2.7
VBAT pin name VDD_VDAC_IN_6POV 370
Internal module supplied VDAC (LDO) 70 1.2 / 1.3 / 1.8 Maximum
(2.7, output voltage selected + 250 mV)
VINTANA1 (LDO) 50 1.5 Maximum
(2.7, output voltage selected + 250 mV)
VINTANA2 (LDO) 250 2.5 / 2.75 Maximum
(2.7, output voltage selected +250 mV)
VIO core (DCDC) < 1 2.7
VAUX4 core (LDO) < 1 2.7
VBAT pin name VDD_VAUXI2S_IN_6POV 350
Internal module supplied VAUX1 (LDO) 200 1.5 / 1.8 / 2.5 / 2.8 / 3.0 Maximum
(2.7, output voltage selected + 250 mV)
VAUX2 (LDO) 100 1.3 / 1.5 / 1.6 / 1.7 / 1.8 / 1.9 / 2.0 / 2.1 / 2.2 / 2.3 / 2.4 / 2.5 / 2.8 Maximum
(2.7, output voltage selected + 250 mV)
VSIM (LDO) 50 1.0 / 1.2 / 1.3 / 1.8 / 2.8 / 3.0 Maximum
(2.7, output voltage selected + 250 mV)
VBAT pin name VDD_VMMC2_IN_6POV 100
VMMC2 (LDO) 100 1.0 / 1.2 / 1.3 / 1.5 / 1.8 / 1.85 / 2.5 / 2.6 / 2.8 / 2.85 / 3.0 / 3.15 Maximum
(2.7, output voltage selected + 250 mV)
Power_REGBATT 0.001 2.7
VBAT pin name VDD_VMMC1_IN_6POV 220
VMMC1 (LDO) 220 1.85 / 2.85 / 3.0 / 3.15 Maximum
(2.7, output voltage selected + 250 mV)
Power_REGBATT 0.001 2.7
VBAT pin name VDD_VINT_IN_6POV 131
Internal module supplied VINTDIG (LDO) 80 1.0 / 1.2 / 1.3 / 1.5 Maximum
(2.7, output voltage selected + 250 mV)
VRRTC (LDO) 30 1.5 Maximum
(2.7, output voltage selected + 250 mV)
VBACKUP (LDO) 1 2.5 / 3.0 / 3.1 / 3.2 Maximum
(2.7, output voltage selected + 250 mV)
VBAT pin name VDD_VAUX4_IN_6POV 100
VAUX4 (LDO) 100 0.7 / 1.0 / 1.2 / 1.3 / 1.5 / 1.8 / 1.85 / 2.5 / 2.6 / 2.8 / 2.85 / 3.0 / 3.15 output voltage selected + 250 mV

4.7 Timing Requirements and Switching Characteristics

4.7.1 Timing Parameters

The timing parameter symbols used in the timing requirement and switching characteristic tables are created in accordance with JEDEC Standard 100. To shorten the symbols, some pin names and other related terminologies are abbreviated as shown in Table 4-1.

Table 4-1 Timing Parameters

Lowercase Subscripts
Symbol Parameter
c Cycle time (period)
d Delay time
dis Disable time
en Enable time
h Hold time
su Setup time
START Start-bit
t Transition time
v Valid time
w Pulse duration (width)
X Unknown, changing, or don't care level
H High
L Low
V Valid
IV Invalid
AE Active edge
FE First edge
LE Last edge
Z High impedance

4.7.2 Target Frequencies

Table 4-2 assumes testing over the recommended operating conditions.

Table 4-2 TPS65950 Interface Target Frequencies

I/O Interface Interface Designation Target Frequency
1.5 V
SmartReflex I2C I2C interface Slave HS mode 3.6 Mbps
GP I2C Slave fast-speed mode 400 kbps
Slave standard mode 100 kbps
USB USB HS 480 Mbps
FS 12 Mbps
LS 1.5 Mbps
JTAG RealView® ICE tool 30 MHz
XDS560 and XDS510 tools 30 MHz
Lauterbach™ tool 30 MHz
TDM/I2S Inter-IC sound (I2S™) 1/(64 * Fs)(1)
Right-justified 1/(64 * Fs)(1)
Left-justified 1/(64 * Fs)(1)
TDM 1/(128 * Fs)(1)
Voice/Bluetooth PCM interface PCM (master mode) 1/(65 * Fs)(2)
PCM (slave mode) 1/(33 to 65 * Fs)(2)
(1) Fs = 8 to 48 kHz; 96 kHz for RX path only (TDM/I2S interface)
(2) Fs = 8 or 16 kHz (voice/Bluetooth PCM interface)

4.7.3 I2C Timing

The TPS65950 provides two I2C HS slave interfaces (one for GP and one for SmartReflex). These interfaces support the standard mode (100 kbps), fast mode (400 kbps), and HS mode (3.4 Mbps). The GP I2C module embeds four slave hard-coded addresses (ID1 = 48h, ID2 = 49h, ID3 = 4Ah, and ID4 = 4Bh). The SmartReflex I2C module uses one slave hard-coded address (ID5). Master mode is not supported.

Table 4-3 and Table 4-4 assume testing over the recommended operating conditions (see Figure 4-1).

swcs032-077.gifFigure 4-1 I2C Interface—Transmit and Receive in Slave Mode

Table 4-3 I2C Interface Timing Requirements(1)(2)

Notation Parameter Min Max Unit
Slave HS Mode
I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 10 ns
I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 70 ns
I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 160 ns
I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 160 ns
I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 160 ns
Slave Fast-Speed Mode
I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 100 ns
I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 0.9 ns
I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 0.6 ns
I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 0.6 ns
I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 0.6 ns
Slave Standard Mode
I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 250 ns
I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 ns
I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 4.7 ns
I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 4 ns
I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 4 ns
(1) The input timing requirements are given by considering a rising or falling time of:
80 ns in HS mode (3.4 Mbps)
300 ns in fast-speed mode (400 Kbps)
1000 ns in standard mode (100 Kbps)
(2) SDA equals I2C.SR.SDA or I2C.CNTL.SDA
SCL equals I2C.SR.SCL or I2C.CNTL.SCL

Table 4-4 I2C Interface Switching Requirements(1)(2)

Notation Parameter Min Max Unit
Slave HS Mode
I1 tw(SCLL) Pulse duration, SCL low 160 ns
I2 tw(SCLH) Pulse duration, SCL high 60 ns
Slave Fast-Speed Mode
I1 tw(SCLL) Pulse duration, SCL low 1.3 (3) µs
I2 tw(SCLH) Pulse duration, SCL high 0.6 µs
Slave Standard Mode
I1 tw(SCLL) Pulse duration, SCL low 4.7 µs
I2 tw(SCLH) Pulse duration, SCL high 4 µs
(1) The capacitive load is:
100 pF in HS mode (3.4 Mbps)
400 pF in fast-speed mode (400 Kbps)
400 pF in standard mode (100 Kbps)
(2) SDA equals I2C.SR.SDA or I2C.CNTL.SDA
SCL equals I2C.SR.SCL or I2C.CNTL.SCL
(3) SCL low timing for slave fast-speed mode is compatibile with 0.79 µs.

4.7.4 Audio Interface: TDM/I2S Protocol

The TPS65950 acts as a master for the TDM and I2S interface or as a slave only for the I2S interface. If the TPS65950 is the master, it must provide frame synchronization (TDM/I2S_SYNC) and bit clock (TDM/I2S_CLK) to the host processor. If the TPS65950 is the slave, it receives frame synchronization and bit clock.

The TPS65950 supports the I2S, TDM, left-justified, and right-justified data formats, but does not support TDM slave mode.

4.7.4.1 I2S Right- and Left-Justified Data Format

Table 4-5 and Table 4-6 assume testing over the recommended operating conditions (see Figure 4-2 and Figure 4-3).

swcs032-078.gifFigure 4-2 I2S Interface—I2S Master Mode
swcs032-079.gifFigure 4-3 I2S Interface—I2S Slave Mode

The timing requirements in Table 4-5 are valid on the following conditions of input slew and output load:

  • Rise and fall time range of inputs (SYNC, DIN) is tR/tF = 1.0 ns/6.5 ns
  • Capacitance load range of outputs (CLK, SYNC, DOUT) is CLoad = 1 pF/30 pF

The input timing requirements in Table 4-5 are given by considering a rising or falling time of 6.5 ns.

Table 4-5 I2S Interface—Timing Requirements

Notation Parameter Min Max Unit
Master Mode
I3 tsu(DIN-CLKH) Setup time, I2S.DIN valid to I2S.CLK high2 25 ns
I4 th(DIN-CLKH) Hold time, I2S.DIN valid from I2S.CLK high. 0 ns
Slave Mode
I0 tc(CLK) Cycle time, I2S.CLK(1) 1/64 * Fs ns
I1 tw(CLK) Pulse duration, I2S.CLK high or low(2) 0.45 * P 0.55 * P ns
I3 tsu(DIN-CLKH) Setup time, I2S.DIN valid to I2S.CLK high 5 ns
I4 th(DIN-CLKH) Hold time, I2S.DIN valid from I2S.CLK high. 5 ns
I6 tsu(SYNC-CLKH) Setup time, I2S.SYNC valid to I2S.CLK high 5 ns
I7 th(SYNC-CLKH) Hold time, I2S.SYNC valid from I2S.CLK high 5 ns
(1) Fs = 8 to 48 kHz; 96 kHz for RX path only
(2) P = I2S.CLK period

The capacitive load for Table 4-6 is 7 pF.

Table 4-6 I2S Interface—Switching Characteristics

Notation Parameter Min Max Unit
Master Mode
I0 tc(CLK) Cycle time, I2S.CLK(1) 1/64 * Fs ns
I1 tw(CLK) Pulse duration, I2S.CLK high or low(2) 0.45 * P 0.55 * P ns
I2 td(CLKL-SYNC) Delay time, I2S.CLK falling edge to I2S.SYNC transition –10 10 ns
I5 td(CLKL-DOUT) Delay time, I2S.CLK falling edge to I2S.DOUT transition –10 10 ns
Slave Mode
I5 td(CLKL-DOUT) Delay time, I2S.CLK falling edge to I2S.DOUT transition 0 20 ns
(1) Fs = 8 to 48 kHz; 96 kHz for RX path only
(2) P = I2S.CLK period

4.7.4.2 TDM Data Format

Table 4-7 and Table 4-8 assume testing over the recommended operating conditions (see Figure 4-4).

swcs032-080.gifFigure 4-4 TDM Interface—TDM Master Mode

The timing requirements in Table 4-7 are valid on the following conditions of input slew and output load:

  • Rise and fall time range of inputs (SYNC, DIN) is tR/tF = 1.0 ns/6.5 ns
  • Capacitance load range of outputs (CLK, SYNC, DOUT) is CLoad = 1 pF/30 pF

Table 4-7 lists the master mode timing requirements for the TDM interface.

Table 4-7 TDM Interface Master Mode Timing Requirements

Notation Parameter Min Max Unit
T3 tsu(DIN-CLKH) Setup time, TDM.DIN valid to TDM.CLK high 25 ns
T4 th(DIN-CLKH) Hold time, TDM.DIN valid from TDM.CLK high 0 ns

Table 4-8 lists the master mode switching characteristics of the TDM interface.

Table 4-8 TDM Interface Master Mode Switching Characteristics

Notation Parameter Min Max Unit
T0 tc(CLK) Cycle time, TDM.CLK (1) 1/64 * Fs ns
T1 tw(CLK) Pulse duration, TDM.CLK high or low(2) 0.45*P 0.55*P ns
T2 td(CLKL-SYNC) Delay time, TDM.CLK rising edge to TDM.SYNC transition –10 10 ns
T5 td(CLKL-DOUT) Delay time, TDM.CLK rising edge to TDM.DOUT transition –10 12 ns
(1) Fs = 8 to 48 kHz; 96 kHz for RX path only
(2) P = TDM.CLK period

4.7.5 Voice/Bluetooth PCM Interfaces

The PCM interface transfers voice data at 8-kHz (default narrowband mode) or 16-kHz (wideband mode) sample rates. The CM interface can act as a slave or master. No PLL is used for the PCM interface, but dividers are used to derive the 8- or 16-kHz clock from HFCLKIN (only when HFCLKIN = 26 MHz). If the system master clock is not 26 MHz, the voice PCM interface is not available.

For the Bluetooth interface, the PCM is supported to transfer voice data to the Bluetooth chip at 8-kHz (default narrowband mode) or 16-kHz sample rate.

The TPS65950 acts as a master for the Bluetooth interface. The frame synchronization and the bit clock are shared from the voice PCM interface. If the system master clock is not 26 MHz, the Bluetooth interface is not available.

Two modes are available for the PCM interfaces: mode 1 (writing on the PCM_VCK rising edge) and mode 2 (writing on the PCM_VCK falling edge).

Table 4-9 and Table 4-10 assume testing over the recommended operating conditions (see Figure 4-5 and Figure 4-6).

swcs032-081.gifFigure 4-5 Voice/BT PCM Interface—Master Mode (Mode 1)
swcs032-082.gifFigure 4-6 Voice PCM Interface—Slave Mode (Mode 1)

The timing requirements in Table 4-9 are valid on the following conditions of input slew and output load:

  • Rise and fall time range of inputs (SYNC, DIN) is tR/tF = 1.0 ns/6.5 ns
  • Capacitance load range of outputs (CLK, SYNC, DOUT) is CLoad = 1 pF/30 pF

Table 4-9 lists the timing requirements for the voice PCM interface, mode 1.

Table 4-9 Voice PCM Interface Timing Requirements (Mode 1)

Notation Parameter Min Max Unit
Voice/Bluetooth PCM Master Mode
P3 tsu(VDR-VCK) Setup time, PCM.VDR valid to PCM. VCK transition (1) 30 ns
P4 th(VDR-VCK) Hold time, PCM.VDR valid from PCM.VCK transition(1) 0 ns
Voice PCM Slave Mode
P0 tc(VCK) Cycle time, PCM.VCK(2) 1/(33 to 65 * Fs) ns
P1 tw(VCK) Pulse duration, PCM.VCK high or low(3) 0.45 * P 0.55 * P ns
P3 tsu(VDR-VCK) Setup time, PCM.VDR valid to PCM. VCK transition(1) 10 ns
P4 th(VDR-VCK) Hold time, PCM.VDR valid from PCM. VCK transition(1) 5 ns
P6 th(VFS-VCK) Hold time, PCM.VFS valid from PCM.VCK transition(1) 5 ns
P7 tSU(VFS-VCK) Setup time, PCM.VFS valid to PCM. VCK transition (1) 10 ns
(1) Writing on PCM.VCK rising edge (mode 1) and writing on PCM.VCK falling edge (mode 2).
(2) Fs = 8 or 16 kHz
(3) P = PCM.CLK period

Table 4-10 lists the switching characteristics of the voice PCM interface, mode 1.

Table 4-10 Voice PCM Interface Switching Characteristics (Mode 1)

Notation Parameter Min Max Unit
Voice/Bluetooth PCM Master Mode
P0 tc(VCK) Cycle time, PCM.VCK(1) 1/65 * Fs ns
P1 tw(VCK) Pulse duration, PCM.VCK high or low(2) 0.45 * P 0.55 * P ns
P2 td(VCK-VFS) Delay time, PCM.VCK transition to PCM.VFS transition (3) –10 10 + Pvoice ns
P5 td(VCL-VDX) Delay time, PCM.VCK transition to PCM.VDX transition –10 10 ns
Voice PCM Slave Mode
P5 td(VCL-VDX) Delay time, PCM.VCK transition to PCM.VDX transition 0 20 ns
(1) Fs = 8 or 16 kHz
(2) P = PCM.CLK period
(3) When TPS65950 is master, the PCM.VFS is delivered one cycle time of 26-MHz voice clock (Pvoice=38.4 ns) after the PCM.VCK rising edge.

4.7.6 JTAG Interfaces

The TPS65950 Joint Test Action Group (JTAG) test access port (TAP) controller handles standard IEEE JTAG interfaces. This section describes the timing requirements for the tools used to test TPS65950 power management.

The JTAG/TAP module provides a JTAG interface according to IEEE Standard 1149.1a. This interface uses the four I/O pins TMS, TCK, TDI, and TDO. The TMS, TCK, and TDI inputs contain a pullup device, which makes their state high when they are not driven. The output TDO is a 3-state output, which is high impedance except when data are shifted between TDI and TDO:

  • TCK is the test clock signal.
  • TMS is the test mode select signal.
  • TDI is the scan path input.
  • TDO is the scan path output.

TMS and TDO are multiplexed at the top level with the GPIO0 and GPIO1 pins. The dedicated external test pin switches from functional mode (GPIO0 and GPIO1) to JTAG mode (TMS and TDO). The JTAG operations are controlled by a state-machine that follows the IEEE Standard 1149.1a state diagram. This state-machine is reset by the TPS65950 internal power-on reset (POR). A test mode is selected by writing a 6-bit word (instruction) into the instruction register and then accessing the related data register.

Table 4-11 and Table 4-12 assume testing over the recommended operating conditions (see Figure 4-7). The input timing requirements are given by considering a rising or falling edge of 7 ns. The capacitive load is 35 pF.

swcs032-083.gifFigure 4-7 JTAG Interface Timing

Table 4-11 JTAG Interface Timing Requirements

Notation Parameter Min Max Unit
Clock
JL1 tc(TCK) Cycle time, JTAG.TCK period 30 ns
JL2 tw(TCK) Pulse duration, JTAG.TCK high or low(1) 0.48*P 0.52*P ns
Read Timing
JL3 tsu(TDIV-TCKH) Setup time, JTAG.TDI valid before JTAG.TCK high 8 ns
JL4 th(TDIV-TCKH) Hold time, JTAG.TDI valid after JTAG.TCK high 5 ns
JL5 tsu(TMSV-TCKH) Setup time, JTAG.TMS valid before JTAG.TCK high 8 ns
JL6 th(TMSV-TCKH) Hold time, JTAG.TMS valid after JTAG.TCK high 5 ns
(1) P = JTAG.TCK clock period

Table 4-12 JTAG Interface Switching Characteristics

Notation Parameter Min Max Unit
Write Timing
JL7 td(TCK-TDOV)) Delay time, JTAG, TCK active edge to JTAG.TDO valid 0 14 ns