SLVSG72 September   2021 TPSM560R6H

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics (VIN = 12 V)
    7. 6.7 Typical Characteristics (VIN = 24 V)
    8. 6.8 Typical Characteristics (VIN = 48 V)
    9. 6.9 Typical Characteristics (VIN = 60 V)
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Adjustable Output Voltage (FB)
      2. 7.3.2 Minimum Input Capacitance
      3. 7.3.3 Minimum Output Capacitance
      4. 7.3.4 Precision Enable (EN), Undervoltage Lockout (UVLO), and Hysteresis (HYS)
      5. 7.3.5 Power Good (PGOOD)
      6. 7.3.6 Overcurrent Protection (OCP)
      7. 7.3.7 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Active Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Shutdown Mode
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Output Voltage Setpoint
        3. 8.2.2.3 Input Capacitor Selection
        4. 8.2.2.4 Output Capacitor Selection
        5. 8.2.2.5 Power-Good Signal
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
      1. 10.2.1 Theta JA Versus PCB Area
      2. 10.2.2 Package Specifications
      3. 10.2.3 EMI
        1. 10.2.3.1 EMI Plots
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design With WEBENCH® Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Absolute Maximum Ratings

Over the operating ambient temperature range(1)
PARAMETER MIN MAX UNIT
Input voltage VIN to PGND –0.3 66 V
EN to AGND(2) –0.3 VIN + 0.3
PGOOD to AGND(2) –0.3 22
FB to AGND –0.3 5.5
AGND to PGND –0.3 0.3
Output voltage VOUT to PGND(2) –0.3 30
VCC to AGND 0 5.5
Operating IC junction temperature, TJ (3) –40 125 °C
Storage temperature, Tstg –55 150 °C
Peak reflow case temperature 245
Maximum number or reflows allowed 3
Mechanical vibration Mil-STD-883H, Method 2007.3, 1 msec, 1/2 sine, mounted 20 G
Mechanical shock Mil-STD-883H, Method 2002.5, 20 to 2000Hz 500 G
Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
The voltage on this pin must not exceed the voltage on the VIN pin by more than 0.3 V.
The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating area (SOA) curves in the tTypical Applications sections, ensures that the maximum junction temperature of any component inside the module is never exceeded.