SLUSEX2A September   2025  – September 2025 UCC27734 , UCC27735

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Dynamic Electrical Characteristics
    7. 5.7 Timing Diagrams
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Input Stages and Interlock
      2. 6.3.2 Enable Function (UCC277x5 Only)
      3. 6.3.3 Undervoltage Lockout (UVLO)
      4. 6.3.4 Level Shifter
      5. 6.3.5 Output Stage
      6. 6.3.6 Low Propagation Delays and Tightly Matched Outputs
      7. 6.3.7 HS Node dV/dt
      8. 6.3.8 Split Grounds (COM and VSS)
      9. 6.3.9 Operation Under Negative HS Voltage Condition
    4. 6.4 Device Functional Modes
      1. 6.4.1 Input and Output Logic Table
      2. 6.4.2 Operation Under 100% Duty Cycle Condition
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Selecting HI and LI Low Pass Filter Components (RHI, RLI, CHI, CLI)
        2. 7.2.2.2 Selecting Bootstrap Capacitor (CBOOT)
        3. 7.2.2.3 Selecting VDD Bypass Capacitor (CVDD)
        4. 7.2.2.4 Selecting Bootstrap Resistor (RBOOT)
        5. 7.2.2.5 Selecting Gate Resistor RHO/RLO
        6. 7.2.2.6 Selecting Bootstrap Diode
        7. 7.2.2.7 Estimate the UCC2773x Power Losses
        8. 7.2.2.8 Application Example Schematic Note
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Third-Party Products Disclaimer
      2. 8.1.2 Development Support
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

  • Locate the UCC2773x as close as possible to the MOSFETs in order to minimize the length of high-current traces between the HO/LO and the Gates of MOSFETs/IGBTs, as well as the return current path to the driver HS and COM from the Source/Emitter of the MOSFET/IGBT.
  • Locate the VDD capacitor (CVDD) and VHB capacitor (CBOOT) as close as possible to the pins of the UCC2773x.
  • A 2Ω to 5Ω resistor in series with the bootstrap diode is recommended to limit bootstrap current.
  • An RC filter with 1Ω to 51Ω resistance and 10pF to 390pF capacitance for HI/LI is recommended.
  • Avoid LI, EN, and HI (driver input) traces placed close to the HS node or any other high dV/dt traces that can induce significant noise into the relatively high impedance leads.
  • Separate power traces and signal traces, such as output and input signals.
  • Ensure there is not high switching current flowing in the control ground (input signal reference) from the power train ground.
  • On the split ground device, a separate VDD–COM and VDD–VSS bypass capacitor should be used to reduce the impact of ground bounce on the driver.