SLUSEX2A September   2025  – September 2025 UCC27734 , UCC27735

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Dynamic Electrical Characteristics
    7. 5.7 Timing Diagrams
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Input Stages and Interlock
      2. 6.3.2 Enable Function (UCC277x5 Only)
      3. 6.3.3 Undervoltage Lockout (UVLO)
      4. 6.3.4 Level Shifter
      5. 6.3.5 Output Stage
      6. 6.3.6 Low Propagation Delays and Tightly Matched Outputs
      7. 6.3.7 HS Node dV/dt
      8. 6.3.8 Split Grounds (COM and VSS)
      9. 6.3.9 Operation Under Negative HS Voltage Condition
    4. 6.4 Device Functional Modes
      1. 6.4.1 Input and Output Logic Table
      2. 6.4.2 Operation Under 100% Duty Cycle Condition
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Selecting HI and LI Low Pass Filter Components (RHI, RLI, CHI, CLI)
        2. 7.2.2.2 Selecting Bootstrap Capacitor (CBOOT)
        3. 7.2.2.3 Selecting VDD Bypass Capacitor (CVDD)
        4. 7.2.2.4 Selecting Bootstrap Resistor (RBOOT)
        5. 7.2.2.5 Selecting Gate Resistor RHO/RLO
        6. 7.2.2.6 Selecting Bootstrap Diode
        7. 7.2.2.7 Estimate the UCC2773x Power Losses
        8. 7.2.2.8 Application Example Schematic Note
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Third-Party Products Disclaimer
      2. 8.1.2 Development Support
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

Because the UCC2773x is a 3.5A, peak-current driver, it requires the placement of low-esr noise-decoupling capacitance as close as possible from the VDD terminal to the VSS/COM terminal to ensure a stable supply during switching. Ceramic capacitors with stable dielectric characteristics over temperature are recommended, such as X7R or better. Additionally, a larger electrolytic capacitor may also be added in parallel to act as an energy storage capacitor, especially in systems with large gate charge.

The recommended electrolytic capacitor is a 22µF, 50V capacitor. The recommended decoupling capacitors are a 1µF 0805-sized 50V X7R capacitor, ideally with (but not essential) a second smaller parallel 100nF 0603-sized 50V X7R capacitor.

Similarly, a low-esr X7R capacitance is recommended for the HB-HS power terminals which must be placed as close as possible to device pins.