JAJSU38 April   2024 DRV8215

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Timing Requirements
    7. 6.7 Timing Diagrams
    8. 6.8 Typical Operating Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 External Components
      2. 7.3.2 Summary of Features
      3. 7.3.3 Bridge Control
      4. 7.3.4 Current Sense and Regulation (IPROPI)
        1. 7.3.4.1 Current Sensing and Current Mirror Gain Selection
        2. 7.3.4.2 Current Regulation
          1. 7.3.4.2.1 Fixed Off-Time Current Regulation
          2. 7.3.4.2.2 Cycle-By-Cycle Current Regulation
      5. 7.3.5 Stall Detection
      6. 7.3.6 Motor Voltage and Speed Regulation
        1. 7.3.6.1 Internal Bridge Control
        2. 7.3.6.2 Setting Speed/Voltage Regulation Parameters
          1. 7.3.6.2.1 Speed and Voltage Set
          2. 7.3.6.2.2 Speed Scaling Factor
            1. 7.3.6.2.2.1 Target Speed Setting Example
          3. 7.3.6.2.3 Motor Resistance Inverse
          4. 7.3.6.2.4 Motor Resistance Inverse Scale
          5. 7.3.6.2.5 KMC Scaling Factor
          6. 7.3.6.2.6 KMC
          7. 7.3.6.2.7 VSNS_SEL
        3. 7.3.6.3 Soft-Start and Soft-Stop
          1. 7.3.6.3.1 TINRUSH
      7. 7.3.7 Protection Circuits
        1. 7.3.7.1 Overcurrent Protection (OCP)
        2. 7.3.7.2 Thermal Shutdown (TSD)
        3. 7.3.7.3 VCC Undervoltage Lockout (UVLO)
        4. 7.3.7.4 Overvoltage Protection (OVP)
        5. 7.3.7.5 nFAULT Output
    4. 7.4 Device Functional Modes
      1. 7.4.1 Active Mode
      2. 7.4.2 Low-Power Sleep Mode
      3. 7.4.3 Fault Mode
    5. 7.5 Programming
      1. 7.5.1 I2C Communication
        1. 7.5.1.1 I2C Write
        2. 7.5.1.2 I2C Read
  9. Register Map
    1. 8.1 DRV8215_STATUS Registers
    2. 8.2 DRV8215_CONFIG Registers
    3. 8.3 DRV8215_CTRL Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application: Brushed DC Motor
      1. 9.2.1 Design Requirements
      2. 9.2.2 Stall Detection
        1. 9.2.2.1 Application Description
          1. 9.2.2.1.1 Stall Detection Timing
          2. 9.2.2.1.2 Hardware Stall Threshold Selection
      3. 9.2.3 Motor Speed and Voltage Regulation Application
        1. 9.2.3.1 Tuning Parameters
          1. 9.2.3.1.1 Resistance Parameters
          2. 9.2.3.1.2 KMC and KMC_SCALE
            1. 9.2.3.1.2.1 Case I
            2. 9.2.3.1.2.2 Case II
              1. 9.2.3.1.2.2.1 Method 1: Tuning from Scratch
                1. 9.2.3.1.2.2.1.1 Tuning KMC_SCALE
                2. 9.2.3.1.2.2.1.2 Tuning KMC
              2. 9.2.3.1.2.2.2 Method 2: Using the Proportionality factor
                1. 9.2.3.1.2.2.2.1 Working Example
      4. 9.2.4 Motor Voltage
      5. 9.2.5 Motor Current
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Bulk Capacitance
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
  11. 10デバイスおよびドキュメントのサポート
    1. 10.1 ドキュメントの更新通知を受け取る方法
    2. 10.2 サポート・リソース
    3. 10.3 Trademarks
    4. 10.4 静電気放電に関する注意事項
    5. 10.5 用語集
  12. 11Revision History
  13. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Overview

The DRV8215 is a high-performance integrated H-bridge motor driver with integrated speed and voltage regulation along with additional integrated features like stall detection, current sense output, current regulation, and protection circuitry.

The integrated speed regulation feature maintains maintains constant motor speed over varying battery voltages. The voltage regulation feature saves energy by driving the motor with a programmable lower terminal voltage. control in the device thereby reducing external components on a PCB and saving cost. The principle is based on counting the number of current ripples appearing in the motor current waveform due to commutations.

The DRV8215 contains PWM and PH/EN interfaces along with an I2C interface for configuration and detailed diagnostics. The EN/IN1 & PH/IN2 pins control the full bridge, which consists of four N-channel MOSFETs that have a typical RDS(ON) of 240mΩ (including one high-side and one low-side FET). Motor speed can be controlled with pulse-width modulation (PWM), at frequencies between 0 to 200kHz. The PMODE bit in I2C registers allows to control the H-bridge solely through I2C commands, reducing the number of GPIO inputs.

The integrated current regulation feature limits motor current to a predefined maximum based on the VREF and IPROPI settings. The IPROPI signal can provide current feedback to a microcontroller during both the drive and brake/slow-decay states of the H-bridge. The gain select bits allow high accuracy current sensing down to 10 mA average motor current. The RDS(ON) of the low-side MOSFET and the overcurrent protection limit changes according to the gain select bits, thereby leading to optimized solutions for different values of motor current. The DRV8215 also has I2C programmable registers to configure a hardware stall detection feature based on the IPROPI current sensing signal.

The integrated protection features protect the device in case of a system fault. These include undervoltage lockout (UVLO), overcurrent protection (OCP), and overtemperature shutdown (TSD). Fault conditions are indicated on the nFAULT pin. Additionally, the overvoltage protection (OVP) feature puts the driver into the brake state when the motor is spun manually while the device is in sleep mode or when the H-bridge is disabled. This prevents the back EMF induced high voltages on the supply rail that could potentially damage the driver and other circuits in the system.

To reduce area and external components on a printed circuit board, the device integrates a charge pump regulator and the corresponding capacitors. The separate full-bridge (VM) and logic (VCC) supplies allow the full-bridge supply voltage to drop to 0V without significant impact to RDS(ON) and without triggering UVLO as long as the VCC supply is stable. The nSLEEP pin provides an ultra-low power mode to minimize current draw during system inactivity.