JAJSLZ2C may   2021  – march 2023 INA234

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. 改訂履歴
  5. ピン構成および機能
  6. 仕様
    1. 6.1 絶対最大定格
    2. 6.2 ESD 定格
    3. 6.3 推奨動作条件
    4. 6.4 熱に関する情報
    5. 6.5 電気的特性
    6. 6.6 タイミング要件 (I2C)
    7. 6.7 タイミング図
    8. 6.8 代表的特性
  7. 詳細説明
    1. 7.1 概要
    2. 7.2 機能ブロック図
    3. 7.3 機能説明
      1. 7.3.1 統合型 A/D コンバータ (ADC)
      2. 7.3.2 電力の計算
      3. 7.3.3 小さいバイアス電流
      4. 7.3.4 低電圧電源と広い同相電圧範囲
      5. 7.3.5 ALERT ピン
    4. 7.4 デバイスの機能モード
      1. 7.4.1 連続動作とトリガ動作の比較
      2. 7.4.2 デバイス・シャットダウン
      3. 7.4.3 パワーオン・リセット
      4. 7.4.4 平均化と変換の時間についての検討事項
    5. 7.5 プログラミング
      1. 7.5.1 I2C シリアル・インターフェイス
      2. 7.5.2 I2C シリアル・インターフェイスを使用した書き込みと読み取り
      3. 7.5.3 高速 I2C モード
      4. 7.5.4 ゼネラル・コール・リセット
      5. 7.5.5 ゼネラル・コールの開始バイト
      6. 7.5.6 SMBus のアラート応答
    6. 7.6 レジスタ・マップ
      1. 7.6.1 デバイスのレジスタ
  8. アプリケーションと実装
    1. 8.1 アプリケーション情報
      1. 8.1.1 デバイスの測定範囲と分解能
      2. 8.1.2 電流と電力の計算
      3. 8.1.3 ADC 出力のデータ・レートとノイズ性能
      4. 8.1.4 フィルタリングと入力についての考慮事項
    2. 8.2 代表的なアプリケーション
      1. 8.2.1 設計要件
      2. 8.2.2 詳細な設計手順
        1. 8.2.2.1 シャント抵抗の選択
        2. 8.2.2.2 デバイスの構成
        3. 8.2.2.3 Shunt Calibration レジスタのプログラム
        4. 8.2.2.4 目標のフォルト・スレッショルドの設定
        5. 8.2.2.5 戻り値の計算
      3. 8.2.3 アプリケーション曲線
    3. 8.3 電源に関する推奨事項
    4. 8.4 レイアウト
      1. 8.4.1 レイアウトのガイドライン
      2. 8.4.2 レイアウト例
  9. デバイスおよびドキュメントのサポート
    1. 9.1 デバイスのサポート
      1. 9.1.1 開発サポート
    2. 9.2 ドキュメントのサポート
      1. 9.2.1 関連資料
    3. 9.3 ドキュメントの更新通知を受け取る方法
    4. 9.4 サポート・リソース
    5. 9.5 商標
    6. 9.6 静電気放電に関する注意事項
    7. 9.7 用語集
  10. 10メカニカル、パッケージ、および注文情報

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • YBJ|8
サーマルパッド・メカニカル・データ
発注情報

統合型 A/D コンバータ (ADC)

INA234 は、低オフセットの 12 ビット・デルタ・シグマ (ΔΣ) ADC を内蔵しています。この ADC は、シャント電圧とバス電圧の両方の測定を処理するために多重化されています。バス電圧の測定は、IN- と GND を基準にして行われます。シャント電圧測定は、負荷電流がシャント抵抗を流れるときに発生する電圧の差動測定で、IN+ ピンと IN- ピンの間で測定されます。シャント電圧測定の最大オフセット電圧はわずか 100μV、最大ゲイン誤差は 0.5% です。シャント電圧測定のオフセット電圧が低いため、与えられたシャント抵抗値について、軽負荷条件での精度が向上します。低オフセットのもう 1 つの利点は、検出抵抗の両端のより小さい電圧降下を正確に検出できることです。そのため、より小さい値のシャント抵抗が使えます。シャント抵抗の値が小さいと、電流検出回路での電力損失が減少し、最終アプリケーションの電力効率が向上します。

電源シーケンシングには特別な考慮事項はありません。IN+ ピンと IN- ピンのバス同相と、VS ピンの電源電圧は互いに独立しているためです。したがって、電源電圧がオフのときでもバス同相電圧が存在する可能性があり、その逆も可能です。