JAJSFD4A May   2018  – November 2018 LM5122ZA

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      アプリケーション概略図
  4. 改訂履歴
  5. 概要(続き)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Undervoltage Lockout (UVLO)
      2. 8.3.2  High-Voltage VCC Regulator
      3. 8.3.3  Oscillator
      4. 8.3.4  Slope Compensation
      5. 8.3.5  Error Amplifier
      6. 8.3.6  PWM Comparator
      7. 8.3.7  Soft Start
      8. 8.3.8  HO and LO Drivers
      9. 8.3.9  Bypass Operation (VOUT = VIN)
      10. 8.3.10 Cycle-by-Cycle Current Limit
      11. 8.3.11 Clock Synchronization
      12. 8.3.12 Maximum Duty Cycle
      13. 8.3.13 Thermal Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 MODE Control (Forced-PWM Mode and Diode-Emulation Mode)
      2. 8.4.2 MODE Control (Skip-Cycle Mode and Pulse-Skipping Mode)
      3. 8.4.3 Hiccup-Mode Overload Protection
      4. 8.4.4 Slave Mode and SYNCOUT
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Feedback Compensation
      2. 9.1.2 Sub-Harmonic Oscillation
      3. 9.1.3 Interleaved Boost Configuration
      4. 9.1.4 DCR Sensing
      5. 9.1.5 Output Overvoltage Protection
      6. 9.1.6 SEPIC Converter Simplified Schematic
      7. 9.1.7 Non-Isolated Synchronous Flyback Converter Simplified Schematic
      8. 9.1.8 Negative to Positive Conversion
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Timing Resistor RT
        2. 9.2.2.2  UVLO Divider RUV2, RUV1
        3. 9.2.2.3  Input Inductor LIN
        4. 9.2.2.4  Current Sense Resistor RS
        5. 9.2.2.5  Current Sense Filter RCSFP, RCSFN, CCS
        6. 9.2.2.6  Slope Compensation Resistor RSLOPE
        7. 9.2.2.7  Output Capacitor COUT
        8. 9.2.2.8  Input Capacitor CIN
        9. 9.2.2.9  VIN Filter RVIN, CVIN
        10. 9.2.2.10 Bootstrap Capacitor CBST and Boost Diode DBST
        11. 9.2.2.11 VCC Capacitor CVCC
        12. 9.2.2.12 Output Voltage Divider RFB1, RFB2
        13. 9.2.2.13 Soft-Start Capacitor CSS
        14. 9.2.2.14 Restart Capacitor CRES
        15. 9.2.2.15 Low-Side Power Switch QL
        16. 9.2.2.16 High-Side Power Switch QH and Additional Parallel Schottky Diode
        17. 9.2.2.17 Snubber Components
        18. 9.2.2.18 Loop Compensation Components CCOMP, RCOMP, CHF
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 ドキュメントの更新通知を受け取る方法
    2. 12.2 コミュニティ・リソース
    3. 12.3 商標
    4. 12.4 静電気放電に関する注意事項
    5. 12.5 Glossary
  13. 13メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Low-Side Power Switch QL

Selection of the power N-channel MOSFET devices by breaking down the losses is one way to compare the relative efficiencies of different devices. Losses in the low-side N-channel MOSFET device can be separated into conduction loss and switching loss.

Low-side conduction loss is approximately calculated as follows:

Equation 40. LM5122ZA eq86_nvs954.gif

where

  • D is the duty cycle
  • the factor of 1.3 accounts for the increase in the N-channel MOSFET device on-resistance due to heating

Alternatively, the factor of 1.3 can be eliminated, and the high temperature on-resistance of the N-channel MOSFET device can be estimated using the RDS(ON) vs temperature curves in the N-channel MOSFET datasheet.

Switching loss occurs during the brief transition period as the low-side N-channel MOSFET device turns on and off. During the transition period both current and voltage are present in the channel of the N-channel MOSFET device. The low-side switching loss is approximately calculated as follows:

Equation 41. LM5122ZA eq101_nvs954.gif

tR and tF are the rise and fall times of the low-side N-channel MOSFET device. The rise and fall times are usually mentioned in the N-channel MOSFET data sheet or can be empirically observed with an oscilloscope.

An additional Schottky diode can be placed in parallel with the low-side N-channel MOSFET switch, with short connections to the source and drain in order to minimize negative voltage spikes at the SW node.