SNOSCY7 June   2014 LP2996A

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
    1. 5.1 Pin Descriptions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Performance Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
  8. Applications and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Input Capacitor
      2. 8.1.2 Output Capacitor
      3. 8.1.3 Thermal Dissipation
    2. 8.2 Typical Application
      1. 8.2.1 Typical Application Circuit
      2. 8.2.2 DDR-III Applications
      3. 8.2.3 DDR-II Applications
      4. 8.2.4 SSTL-2 Applications
      5. 8.2.5 Level Shifting
        1. 8.2.5.1 Output Capacitor Selection
      6. 8.2.6 HSTL Applications
      7. 8.2.7 QDR Applications
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
    4. 10.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
  13. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings (1)(2)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
AVIN to GND −0.3 6 V
PVIN to GND –0.3 AVIN
VDDQ(1) −0.3 6 V
Junction Temperature 150 °C
Lead Temperature (Soldering, 10 sec) 260 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range −65 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 1 kV
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Junction Temp. Range(2) 0 125 °C
AVIN to GND 2.2 5.5 V
PVIN Supply Voltage 0 AVIN
SD Input Voltage 0 AVIN

6.4 Thermal Information

THERMAL METRIC(1)(2)(3) SO PowerPAD-8 DDA UNIT
8 PINS
RθJA Junction-to-ambient thermal resistance 56.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 65.1
RθJB Junction-to-board thermal resistance 36.5
ψJT Junction-to-top characterization parameter 15.9
ψJB Junction-to-board characterization parameter 36.5
RθJC(bot) Junction-to-case (bottom) thermal resistance 8.4
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The package thermal impedance is calculated in accordance with JESD 51-7
(3) Thermal Resistances were simulated on a 4 layer, JEDEC board.

6.5 Electrical Characteristics

Specifications are for TJ = 25°C and apply over the full Operating Temperature Range (TJ = 0°C to +125°C)(3). Unless otherwise specified, AVIN = PVIN = 2.5V, VDDQ = 2.5V(4).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VREF VREF voltage (DDR I) VIN = VDDQ = 2.3 V 1.135 1.158 1.185 V
VIN = VDDQ = 2.5 V 1.235 1.258 1.285
VIN = VDDQ = 2.7 V 1.335 1.358 1.385
VREF voltage (DDR II) PVIN = VDDQ = 1.7 V 0.837 0.860 0.887
PVIN = VDDQ = 1.8 V 0.887 0.910 0.937
PVIN = VDDQ = 1.9 V 0.936 0.959 0.986
VREF Voltage (DDR III) PVIN = VDDQ = 1.35V 0.669 0.684 0.699
PVIN = VDDQ = 1.5V 0.743 0.758 0.773
PVIN = VDDQ = 1.6V 0.793 0.808 0.823
ZVREF VREF Output Impedance IREF = –30 to +30 µA 2.5
VTT VTT Output Voltage (DDR I) (7) IOUT = 0 A V
 VIN = VDDQ = 2.3 V 1.120 1.159 1.190
 VIN = VDDQ = 2.5 V 1.210 1.259 1.290
 VIN = VDDQ = 2.7 V 1.320 1.359 1.390
IOUT = +/– 1.5 A
 VIN = VDDQ = 2.3 V 1.125 1.159 1.190
 VIN = VDDQ = 2.5 V 1.225 1.259 1.290
 VIN = VDDQ = 2.7 V 1.325 1.359 1.390
VTT Output Voltage (DDR II) (7) IOUT = 0 A, AVIN = 2.5 V V
 PVIN = VDDQ = 1.7 V 0.822 0.856 0.887
 PVIN = VDDQ = 1.8 V 0.874 0.908 0.939
 PVIN = VDDQ = 1.9 V 0.923 0.957 0.988
IOUT = +/– 0.5A, AVIN = 2.5 V
 PVIN = VDDQ = 1.7 V 0.820 0.856 0.890
 PVIN = VDDQ = 1.8 V 0.870 0.908 0.940
 PVIN = VDDQ = 1.9 V 0.920 0.957 0.990
VTT Output Voltage (DDR III) (7) IOUT = 0A, AVIN = 2.5 V V
PVIN = VDDQ = 1.35V 0.656 0.677 0.698
PVIN = VDDQ = 1.5 V 0.731 0.752 0.773
PVIN = VDDQ = 1.6 V 0.781 0.802 0.823
IOUT = +0.2A, AVIN = 2.5V
PVIN = VDDQ = 1.35V
0.667 0.688 0.710
IOUT = -0.2A, AVIN = 2.5V
PVIN = VDDQ = 1.35V
0.641 0.673 0.694
IOUT = +0.4 A, AVIN = 2.5 V
PVIN = VDDQ = 1.5 V
0.740 0.763 0.786
IOUT = –0.4 A, AVIN = 2.5 V
PVIN = VDDQ = 1.5 V
0.731 0.752 0.773
IOUT = +0.5A, AVIN = 2.5 V
PVIN = VDDQ = 1.6 V
0.790 0.813 0.836
IOUT = -0.5 A, AVIN = 2.5 V
PVIN = VDDQ = 1.6 V
0.781 0.802 0.823
VOSVtt VTT Output Voltage Offset (VREF – VTT) for DDR I (7) IOUT = 0 A –30 0 30 mV
IOUT = –1.5 A –30 0 30
IOUT = 1.5 A –30 0 30
VTT Output Voltage Offset (VREF – VTT) for DDR II (7) IOUT = 0 A –30 0 30
IOUT = –0.5 A –30 0 30
IOUT = 0.5 A –30 0 30
VTT Output Voltage Offset (VREF – VTT) for DDR III (7) IOUT = 0 A –30 0 30
IOUT = ±0.2 A –30 0 30
IOUT = ±0.4 A –30 0 30
IOUT = ±0.5 A –30 0 30
IQ Quiescent Current (5) IOUT = 0 A 320 500 µA
ZVDDQ VDDQ Input Impedance 100
ISD Quiescent current in shutdown (5) SD = 0 V 115 150 µA
IQ_SD Shutdown leakage current SD = 0 V 2 5
VIH Minimum Shutdown High Level 1.9 V
VIL Maximum Shutdown Low Level 0.8
Iv VTT leakage current in shutdown SD = 0 V
VTT = 1.25 V
1 10 µA
ISENSE VSENSE Input current 13 nA
TSD Thermal Shutdown (6) 165 °C
TSD_HYS Thermal Shutdown Hysteresis 10
(1) Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating range indicates conditions for which the device is intended to be functional, but does not ensure specific performance limits. For ensured specifications and test conditions see Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
(2) At elevated temperatures, devices must be derated based on thermal resistance.
(3) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate Texas Instruments' Average Outgoing Quality Level (AOQL).
(4) VIN is defined as VIN = AVIN = PVIN.
(5) Quiescent current defined as the current flow into AVIN.
(6) The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(MAX), the junction to ambient thermal resistance, θJA, and the ambient temperature, TA. Exceeding the maximum allowable power dissipation will cause excessive die temperature and the regulator will go into thermal shutdown.
(7) VTT load regulation is tested by using a 10 ms current pulse and measuring VTT.

6.6 Typical Performance Characteristics

20057520.gif
Figure 1. IQ vs AVIN In SD
20057522.gif
Figure 3. VIH and VIL
20057524.gif
Figure 5. VREF vs VDDQ
20057527.gif
Figure 7. IQ vs AFIN in SD Temperature
20057531.gif
Figure 9. Maximum Sourcing Current vs AVIN
(VDDQ = 2.5 V, PVIN = 1.8 V)
20057533.gif
Figure 11. Maximum Sourcing Current vs AVIN
(VDDQ = 2.5 V, PVIN = 3.3 V)
20057535.gif
Figure 13. Maximum Sourcing Current vs AVIN
(VDDQ = 1.8 V, PVIN = 1.8 V)
20057537.gif
Figure 15. Maximum Sourcing Current vs AVIN
(VDDQ = 1.8 V, PVIN = 3.3 V)
20057521.gif
Figure 2. IQ vs AvIN
20057523.gif
Figure 4. VREF vs IREF
20057526.gif
Figure 6. VTT vs VDDQ
20057528.gif
Figure 8. IQ vs AVIN Temperature
20057532.gif
Figure 10. Maximum Sourcing Current vs AVIN
(VDDQ = 2.5 V, PVIN = 2.5 V)
20057534.gif
Figure 12. Maximum Sinking Current vs AVIN
(VDDQ = 2.5 V)
20057536.gif
Figure 14. Maximum Sinking Current vs AVIN
(VDDQ = 1.8 V)