SLVSCV3B March   2015  – June 2015 TPS566250

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Simplified Schematic
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 PWM Operation
      2. 8.3.2 PWM Frequency and Adaptive On-Time Control
      3. 8.3.3 Soft Start and Pre-Biased Soft Start
      4. 8.3.4 Overcurrent Protection
      5. 8.3.5 UVLO Protection
      6. 8.3.6 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Auto-Skip Eco-mode™ Control
    5. 8.5 Programming
      1. 8.5.1 I2C Interface
      2. 8.5.2 I2C Protocol
        1. 8.5.2.1 Input Voltage
        2. 8.5.2.2 Output Voltage
        3. 8.5.2.3 Data Format
        4. 8.5.2.4 START and STOP Conditions
      3. 8.5.3 I2C Chip Address Byte
    6. 8.6 Register Maps
      1. 8.6.1 I2C Register Address Byte
        1. 8.6.1.1 Output Voltage Register (offset = 00000000) [reset = 0h]
        2. 8.6.1.2 Power Good State Register (offset = 00011000) [reset = 18h]
      2. 8.6.2 CheckSum Bit
      3. 8.6.3 Output Voltage Registers
      4. 8.6.4 Summary of Default Control Bits
        1. 8.6.4.1 DAC Settle
        2. 8.6.4.2 Operation During VID Transition
  9. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Output Voltage Resistors Selection
        2. 9.2.2.2 Output Filter Selection
        3. 9.2.2.3 Input Capacitor Selection
        4. 9.2.2.4 Bootstrap Capacitor Selection
      3. 9.2.3 Application Performance Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
    2. 12.2 Third-Party Products Disclaimer
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Thermal Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

13.1 Thermal Information

This 8-pin DDA package incorporates an exposed thermal pad that is designed to be directly to an external heatsink. The thermal pad must be soldered directly to the printed board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the exposed thermal pad and how to use the advantage of its heat dissipating abilities, see the Technical Brief, PowerPAD™ Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD™ Made Easy, Texas Instruments Literature No. SLMA004. The exposed thermal pad dimensions for this package are shown in the following illustration.