SFFS757 February   2024 DLP4620S-Q1 , DLPC231S-Q1

 

  1.   1
  2. 1Introduction
    1.     Trademarks
  3. 2 DLP4620S-Q1 Chipset Functional Safety Capability
  4. 3Development Process for Management of Systematic Faults
    1. 3.1 TI New-Product Development Process
    2. 3.2 TI Functional Safety Development Process
  5. 4 DLP4620S-Q1 Chipset Overview
    1. 4.1 Targeted Applications
    2. 4.2 DLP4620S-Q1 Chipset Functional Safety Concept
      1. 4.2.1 Typical Hazards
      2. 4.2.2 Chipset Architecture
      3. 4.2.3 Built-In Self Tests
    3. 4.3 Functional Safety Constraints and Assumptions
  6. 5Description of Hardware Component Parts
    1. 5.1 Description of System Level Built In Self Test (BISTs)
  7. 6Management of Random Faults
    1. 6.1 Fault Reporting
      1. 6.1.1 HOST_IRQ
      2. 6.1.2 Error History
      3. 6.1.3 Fault Handling
    2. 6.2 Functional Safety Mechanism Categories
    3. 6.3 Description of Functional Safety Mechanisms
      1. 6.3.1 Video Path Protection
        1. 6.3.1.1 Video Input BISTs
        2. 6.3.1.2 Video Processing BISTs
        3. 6.3.1.3 Video Output BISTs
      2. 6.3.2 Illumination Control Protection
        1. 6.3.2.1 Communication Interface and Register Protection
        2. 6.3.2.2 LED Control Feedback Loop Protection
        3. 6.3.2.3 Data Load and Transfer Protection
        4. 6.3.2.4 Watchdogs and Clock Monitors
        5. 6.3.2.5 Voltage Monitors
  8.   A Summary of Recommended Functional Safety Mechanism Usage
  9.   B Distributed Developments
    1.     B.1 How the Functional Safety Lifecycle Applies to TI Functional Safety Products
    2.     B.2 Activities Performed by Texas Instruments
    3.     B.3 Information Provided
  10.   C Revision History

Functional Safety Mechanism Categories

This section includes a description of the different types of functional safety mechanisms that are applied to the design blocks of the DLP4620S-Q1 chipset.

The functional safety mechanism categories are defined as follows:

    Component Hardware Functional Safety Mechanisms A safety mechanism that is implemented by TI in silicon which can communicate error status upon the detection of failures. The safety mechanism may require software to enable its functionality, to take action when a failure is detected, or both.
    Component Hardware and Software Functional Safety Mechanisms A test recommended by TI which requires both, safety mechanism hardware which has been implemented in silicon by TI, and which requires software. The failure modes of the hardware used in this safety mechanisms are analyzed or described as part of the functional safety analysis or FMEDA. The system implementer is responsible for analyzing the software aspects for this safety mechanism.
    Component Software Functional Safety Mechanisms A software test recommended by TI. The failure modes of the software used in this safety mechanism are not analyzed or described in the functional safety analysis or FMEDA. For some components, TI may provide example code or supporting code for the software functional safety mechanisms. This code is intended to aid in the development, but the customer shall do integration testing and verification as needed for their system functional safety concept.
    System Functional Safety Mechanisms A safety mechanism implemented externally of this component. For example an external monitoring IC would be considered to be a system functional safety mechanism.
    Test for Safety Mechanisms This test provides coverage for faults on a safety mechanism only. It does not provide coverage for the primary function.
    Alternative Safety Mechanisms An alternative safety mechanism is not capable of detecting a fault of safety mechanism hardware, but instead is capable of recognizing the primary function fault (that another safety mechanism may have failed to detect). Alternate safety mechanisms are typically used when there is no direct test for a safety mechanism.