SLAU869E October   2022  – January 2024

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Getting Started
    1. 1.1 Introduction
    2. 1.2 Key Features
    3. 1.3 What's Included
      1. 1.3.1 Kit Contents
      2. 1.3.2 Software Examples
    4. 1.4 First Step Out-of-Box Experience
      1. 1.4.1 Connecting to the Computer
      2. 1.4.2 Running the Out-of-Box Experience
    5. 1.5 Next Steps: Looking Into the Provided Code
  5. 2Hardware
    1. 2.1 Jumper Map
    2. 2.2 Block Diagram
    3. 2.3 Hardware Features
      1. 2.3.1 MSPM0L1306 MCU
      2. 2.3.2 XDS110-ET Onboard Debug Probe With EnergyTrace Technology
      3. 2.3.3 Debug Probe Connection: Isolation Jumper Block
      4. 2.3.4 Application (or Backchannel) UART
      5. 2.3.5 Using an External Debug Probe Instead of the Onboard XDS110-ET
      6. 2.3.6 Using the XDS110-ET Debug Probe With a Different Target
      7. 2.3.7 Special Features
        1. 2.3.7.1 Thermistor
        2. 2.3.7.2 Light Sensor
    4. 2.4 Power
      1. 2.4.1 XDS110-ET USB Power
    5. 2.5 External Power Supply and BoosterPack Plug-in Module
    6. 2.6 Measure Current Draw of the MSPM0 MCU
    7. 2.7 Clocking
    8. 2.8 BoosterPack Plug-in Module Pinout
  6. 3Software Examples
  7. 4Resources
    1. 4.1 Integrated Development Environments
      1. 4.1.1 TI Cloud Development Tools
      2. 4.1.2 TI Resource Explorer Cloud
      3. 4.1.3 Code Composer Studio Cloud
      4. 4.1.4 Code Composer Studio IDE
    2. 4.2 MSPM0 SDK and TI Resource Explorer
    3. 4.3 MSPM0L1306 MCU
      1. 4.3.1 Device Documentation
      2. 4.3.2 MSPM0L1306 Code Examples
    4. 4.4 Community Resources
      1. 4.4.1 TI E2E Forums
  8. 5Schematics
  9. 6Revision History

XDS110-ET Onboard Debug Probe With EnergyTrace Technology

To keep development easy and cost effective, the TI LaunchPad development kits integrate an onboard debug probe, which eliminates the need for expensive programmers. The MSPM0L1306 has the XDS110 debug probe (see Figure 2-4), which is a simple and low-cost debugger that supports all MSPM0 device derivatives.

GUID-20221006-SS0I-ZMVC-4XTM-Q8SZQKGPK3WD-low.png Figure 2-4 LP-MSPM0L1306 Debugger

The XDS110-ET provides a "backchannel" UART-over-USB connection with the host, which can be very useful during debugging and for easy communication with a PC. More details can be found in Section 2.3.4.

The XDS110-ET also includes EnergyTrace Technology that allows a user to quickly estimate the power consumption of their application. Accurate EnergyTrace measurements can only be taken if the XDS110-ET is the sole provider of power to the target device. Measurements include all power drawn from the portion of the board below the isolation block. See Section 2.6 for more information around current measurements.