SPRUJ10E May   2022  – May 2025

 

  1.   1
  2.   Description
  3.   Features
  4.   4
  5. 1Preface: Read This First
    1. 2.1 Sitara MCU+ Academy
    2. 2.2 If You Need Assistance
    3. 2.3 Important Usage Notes
  6. 2Kit Overview
    1. 3.1 Introduction
    2. 3.2 Kit Contents
    3. 3.3 Specification
      1. 3.3.1 Key Features
      2. 3.3.2 Component Identification
      3. 3.3.3 Functional Block Diagram
    4. 3.4 Device Information
    5. 3.5 BoosterPacks
    6. 3.6 Compliance
    7. 3.7 Security
  7. 3Board Setup
    1. 4.1 Power Requirements
      1. 4.1.1 Power Input Using USB Type-C Connector
      2. 4.1.2 Power Status LEDs
      3. 4.1.3 Power Tree
    2. 4.2 Push Buttons
    3. 4.3 Boot Mode Selection
  8. 4Hardware Description
    1. 5.1  Functional Block Diagram
    2. 5.2  GPIO Mapping
    3. 5.3  Reset
    4. 5.4  Clock
    5. 5.5  Memory Interface
      1. 5.5.1 QSPI
      2. 5.5.2 Board ID EEPROM
    6. 5.6  Ethernet Interface
      1. 5.6.1 Ethernet PHY #1 - CPSW RGMII/ICSSM
      2. 5.6.2 Ethernet PHY #2: CPSW RGMII/ICSSM
      3. 5.6.3 LED Indication in RJ45 Connector
    7. 5.7  I2C
    8. 5.8  Industrial Application LEDs
    9. 5.9  SPI
    10. 5.10 UART
    11. 5.11 MCAN
    12. 5.12 FSI
    13. 5.13 JTAG
    14. 5.14 Test Automation Header
    15. 5.15 LIN
    16. 5.16 MMC
    17. 5.17 ADC and DAC
    18. 5.18 EQEP and SDFM
    19. 5.19 EPWM
    20. 5.20 BoosterPack Headers
    21. 5.21 Pinmux Mapping
  9. 5EVM Revision Design Changes
    1. 6.1 Rev A Design Changes
  10. 6Hardware Design Files
  11. 7References
    1. 8.1 Reference Documents
    2. 8.2 Other TI Components Used in This Design
  12.   Trademarks
  13. 8Revision History

Device Information

The AM263x Sitara™ Arm® Microcontrollers are built to meet the complex real-time processing needs of next generation industrial and automotive embedded products. The AM263x MCU family consists of multiple pin-to-pin compatible devices with up to four 400MHz Arm® Cortex®-R5F cores. As an option, the Arm® R5F subsystem can be programmed to run in lockstep or dual-core mode for a multiple functional safety configurations. The industrial communications subsystem (PRU-ICSS) enables integrated industrial Ethernet communication protocols such as PROFINET®, TSN, Ethernet/IP®, EtherCAT® (among many others), standard Ethernet connectivity, and even custom I/O interfaces. The family is designed for the future of motor control and digital power applications with advanced analog sensing and digital actuation modules.

The multiple R5F cores are arranged in cluster subsystems with 256KB of shared tightly coupled memory (TCM) along with 2MB of shared SRAM, greatly reducing the need for external memory. Extensive ECC is included for on-chip memories, peripherals, and interconnects for enhanced reliability. Granular firewalls managed by the Hardware Security Manager (HSM) enable developers to implement stringent security-minded system design requirements. Cryptographic acceleration and secure boot are also available on AM263x devices.

TI provides a complete set of microcontroller software and development tools for the AM263x family of microcontrollers.