SFFS757 February   2024 DLP4620S-Q1 , DLPC231S-Q1

 

  1.   1
  2. 1Introduction
    1.     Trademarks
  3. 2 DLP4620S-Q1 Chipset Functional Safety Capability
  4. 3Development Process for Management of Systematic Faults
    1. 3.1 TI New-Product Development Process
    2. 3.2 TI Functional Safety Development Process
  5. 4 DLP4620S-Q1 Chipset Overview
    1. 4.1 Targeted Applications
    2. 4.2 DLP4620S-Q1 Chipset Functional Safety Concept
      1. 4.2.1 Typical Hazards
      2. 4.2.2 Chipset Architecture
      3. 4.2.3 Built-In Self Tests
    3. 4.3 Functional Safety Constraints and Assumptions
  6. 5Description of Hardware Component Parts
    1. 5.1 Description of System Level Built In Self Test (BISTs)
  7. 6Management of Random Faults
    1. 6.1 Fault Reporting
      1. 6.1.1 HOST_IRQ
      2. 6.1.2 Error History
      3. 6.1.3 Fault Handling
    2. 6.2 Functional Safety Mechanism Categories
    3. 6.3 Description of Functional Safety Mechanisms
      1. 6.3.1 Video Path Protection
        1. 6.3.1.1 Video Input BISTs
        2. 6.3.1.2 Video Processing BISTs
        3. 6.3.1.3 Video Output BISTs
      2. 6.3.2 Illumination Control Protection
        1. 6.3.2.1 Communication Interface and Register Protection
        2. 6.3.2.2 LED Control Feedback Loop Protection
        3. 6.3.2.3 Data Load and Transfer Protection
        4. 6.3.2.4 Watchdogs and Clock Monitors
        5. 6.3.2.5 Voltage Monitors
  8.   A Summary of Recommended Functional Safety Mechanism Usage
  9.   B Distributed Developments
    1.     B.1 How the Functional Safety Lifecycle Applies to TI Functional Safety Products
    2.     B.2 Activities Performed by Texas Instruments
    3.     B.3 Information Provided
  10.   C Revision History

Distributed Developments

A Development Interface Agreement (DIA) is intended to capture the agreement between two parties towards the management of each party’s responsibilities related to the development of a functional safety system. TI functional safety components are typically designed for many different systems and are considered to be Safety Elements out of Context (SEooC) hardware components. The system integrator is then responsible for taking the information provided in the hardware component safety manual, safety analysis report and safety report to perform system integration activities. Because there is no distribution of development activities, TI does not accept DIAs with system integrators.

TI functional safety components are products that TI represents, promotes or markets as helping customers mitigate functional safety related risks in an end application and/or as compliant with an industry functional safety standard or FS-QM. For more information about TI functional safety components, go to TI.com/functionalsafety.