SLUAAL2 june   2023 UCC256402 , UCC256403 , UCC256404

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1UCC25640x Frequently Asked Questions
    1. 1.1  For the Time Domain Simulation and Fundamental Harmonic Analysis of LLC Resonant Converters, What Model of the Transformer Should be Used?
      1. 1.1.1 LLC Design Using T Type Transformer Model
    2. 1.2  How to Connect External Gate Drivers to the UCC25640x for High Gate Driver Current Capability?
    3. 1.3  When Powering on the PFC-LLC AC-DC Converter, What Sequence is Recommended?
    4. 1.4  How to Eliminate the Nuisance ZCS Detection During the Light Load?
    5. 1.5  What is the Purpose of Maintaining the FB Pin Voltage of the UCC25640x Controllers at a Constant Level?
    6. 1.6  How to Improve the Slew Rate Detection at HS Pin of the UCC25640x Controller?
    7. 1.7  How to Operate the UCC25640x Controller in the Open Loop?
    8. 1.8  What Happens if the VCR Pin Peak to Peak Voltage of the Controller Exceeds 6 V?
    9. 1.9  What UCC25640x settings effect the startup duration of the LLC?
    10. 1.10 What is Causing the Current Imbalance in the LLC's Secondary Side Windings?
    11. 1.11 How to Design TL431 Compensator for LLC With UCC25640x Controller
      1. 1.11.1 LLC Plant Transfer Function Under HHC Control
      2. 1.11.2 Type 2 and Type 3 Compensator with TL431 [20]
        1. 1.11.2.1 Type 2 Compensator
        2. 1.11.2.2 Type 2 Compensator Without Fast Lane
        3. 1.11.2.3 Type 3 Compensator with Fast Lane
        4. 1.11.2.4 Type 3 Compensator Without Fast Lane
      3. 1.11.3 Type 3 Compensator Design Example
    12. 1.12 How to Design LLC for Battery Charging and LED Driver Applications?
      1. 1.12.1 LED Driver Design Example
      2. 1.12.2 Battery Charger Design Example
    13. 1.13 How to Implement CC-CV Feedback Control?
      1. 1.13.1 Voltage Feedback Loop (Type 2) Transfer Function
      2. 1.13.2 Current Feedback Loop (Type 2) Transfer Function
    14. 1.14 What is the Simplest Approach to Configure the Burst Mode Thresholds for UCC25640x Based on the Load Power?
    15. 1.15 How to Avoid the UCC25640x Controller to Enter into Burst Mode?
    16. 1.16 What are the Methods for Preventing VCC From Decreasing Below the VCC Restart Threshold During Burst Mode?
    17. 1.17 How Does BMTL Threshold Value Impacts the Output Voltage Ripple and the VCC Pin Voltage and Magnetizing Current?
    18. 1.18 How to Design Magnetics for LLC?
      1. 1.18.1 LLC Resonant Inductor Design
      2. 1.18.2 LLC Transformer Design
    19. 1.19 How is the Dead Time in UCC25640x Determined During ZCS Detection and in the Absence of Valid Slew Rate Detection?
  5. 2References

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 

Copyright © 2023, Texas Instruments Incorporated