SLUAAY5 December   2024 UCC21551-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Automotive PTC Heater Module Overview
    1. 2.1 Automotive Heating Architectures
      1. 2.1.1 Positive Temperature Coefficient Heaters
      2. 2.1.2 Heat Pumps
    2. 2.2 Automotive Heating Architectures
    3. 2.3 PTC Heater Topologies
  6. 3Design of Automotive PTC Heater Controller
    1. 3.1  Block Diagrams
    2. 3.2  Designing the Power Supplies
    3. 3.3  Picking Low-Dropout Regulators
    4. 3.4  Designing of the Communication Interface
    5. 3.5  Implementation of the Digital Isolator
    6. 3.6  Implementation of the Microcontroller Unit
    7. 3.7  Designing of the Switch Driver Stage
    8. 3.8  Selection of the Power Switches
    9. 3.9  Considerations of the PTC Load
    10. 3.10 Designing the Load Current Monitoring
    11. 3.11 Selection of the Temperature Sensing
  7. 4Summary

Summary

The electrification of vehicles has driven automakers to take on new challenges, such as how to design thermal management systems for the best result to the user while saving of cost and weight of the end vehicle. The different solutions available in the market today have their own advantages and tradeoffs, so it is up to the discretion of the designer on which solution to choose from. Though PTC’s are not the most efficient system for heating, they offer significant benefits in cost, weight, and design simplicity.

For more resources on automotive heating and cooling, please visit the Thermal management applications page and read the How to design heating and cooling systems for HEV/EVs.