SLUUCW4 November   2023 BQ27Z558

 

  1.   1
  2.   Description
  3.   Features
  4.   Applications
  5.   5
  6. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 Specification
    4. 1.4 Device Information
  7. 2Hardware
    1. 2.1 Hardware Setup
      1. 2.1.1 Hardware Requirements
      2. 2.1.2 Connecting the BQ27Z558 Circuit Module to a Battery Pack
      3. 2.1.3 EVM Jumpers Description
    2. 2.2 Chemical ID
      1. 2.2.1 Chemical ID Selection Process Description
      2. 2.2.2 Hardware Requirements and Setup
      3. 2.2.3 Logging Data in bqStudio
      4. 2.2.4 GPCChem Tool
      5. 2.2.5 Programming a Chemical ID
      6. 2.2.6 Further Resources for Chemical ID Process
    3. 2.3 Calibrating Gauge Measurements
      1. 2.3.1 Voltage Calibration
      2. 2.3.2 Current Calibration
    4. 2.4 Learning Cycle and Golden Image
      1. 2.4.1 Learning Cycle Process Description
      2. 2.4.2 Data Memory Configuration
      3. 2.4.3 Learning Cycle Steps
      4. 2.4.4 Low Temperature Optimization
      5. 2.4.5 Creating the Golden Image File
      6. 2.4.6 Programming the Golden Image File
    5. 2.5 BQ27Z558-Based Circuit Module
      1. 2.5.1 Circuit Module Connections
      2. 2.5.2 Pin Description
  8. 3Software
    1. 3.1 Software Setup
      1. 3.1.1 System Requirements
      2. 3.1.2 Software Installation
    2. 3.2 Troubleshooting Unexpected Dialog Boxes
    3. 3.3 Using bqStudio
      1. 3.3.1 Starting the Program
      2. 3.3.2 Setting Programmable BQ27Z558 Options
    4. 3.4 Gauge Communication
      1. 3.4.1 Advanced Communication in bqStudio
      2. 3.4.2 Standard Data Commands
      3. 3.4.3 Manufacturer Access Commands
      4. 3.4.4 Further Resources on Gauge Communication
  9. 4Hardware Design Files
    1. 4.1 Schematic
    2. 4.2 PCB Layout
    3. 4.3 Bill of Material
  10. 5Additional Information
    1.     Trademarks

Programming a Chemical ID

The ChemID is programmed into the gauge using bqStudio. Navigate to the Chemistry window in bqStudio. A view of this window is shown in Figure 2-6.

GUID-8FFAD888-8D2C-47AA-BC1B-CAE6FA7B9C87-low.pngFigure 2-6 Chemistry Window View in bqStudio

Sort by a given parameter by clicking the top of that column once. TI recommends to sort the table by Chemistry ID so that the ChemIDs are ordered numerically. Scroll down to the Chemistry ID that was reported as the best fit in the GPC Tool report, select this Chemistry ID, and then press the Program Selected Chemistry button.

If the Chemistry ID is not in this list, then update the Chemistry version in bqStudio. To do so, see the gas gauge chemistry resources found on ti.com.

Once the gauge is programmed with this chemistry, the ChemID can be confirmed by pressing the CHEM_ID button in the Commands window, shown on the right side of Figure 2-6. Check the Log Panel window, shown in the bottom-right corner of Figure 2-6, and confirm that the correct Chemistry ID was returned.