SLVSI74A July   2025  – November 2025 TLV61290

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 System Characteristics
    7. 6.7 I2C Interface Timing Characteristics
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Output Voltage Setting
      2. 7.3.2 Switching frequency and Spread Spectrum Function
    4. 7.4 Device Functional Modes
      1. 7.4.1  Enable and Start-up
      2. 7.4.2  Operation Mode Setting
      3. 7.4.3  Bypass Mode
      4. 7.4.4  Boost Control Operation
      5. 7.4.5  Auto PFM Mode
      6. 7.4.6  Forced PWM Mode
      7. 7.4.7  Ultrasonic Mode
      8. 7.4.8  Output Discharge
      9. 7.4.9  Undervoltage Lockout
      10. 7.4.10 Current Limit Operation
      11. 7.4.11 Output Short-to-Ground Protection
      12. 7.4.12 Thermal Shutdown
      13. 7.4.13 Power-Good Indication Status
    5. 7.5 Programming
      1. 7.5.1 Data Validity
      2. 7.5.2 START and STOP Conditions
      3. 7.5.3 Byte Format
      4. 7.5.4 Acknowledge (ACK) and Not Acknowledge (NACK)
      5. 7.5.5 Target Address and Data Direction Bit
      6. 7.5.6 Single Read and Write
      7. 7.5.7 Multi-Read and Multi-Write
    6. 7.6 Register Maps
      1. 7.6.1 DeviceID Register
      2. 7.6.2 CONFIG Register
      3. 7.6.3 VOUTFLOORSET Register
      4. 7.6.4 ILIMBSTSET Register
      5. 7.6.5 VOUTROOFSET Register
      6. 7.6.6 STATUS Register
      7. 7.6.7 ILIMPTSET Register
      8. 7.6.8 BSTLOOP Register
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 TLV61290 with 2.5V-4.35V VIN, 3.4V VOUT, 4A Output Current
        1. 8.2.1.1 Design Requirement
        2. 8.2.1.2 Detailed Design Parameters
          1. 8.2.1.2.1 Inductor Selection
          2. 8.2.1.2.2 Output Capacitor
          3. 8.2.1.2.3 Input Capacitor
          4. 8.2.1.2.4 Checking Loop Stability
        3. 8.2.1.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
      3. 8.4.3 Thermal Information
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1.     79
Input Capacitor

Multilayer ceramic capacitors are an excellent choice for input decoupling of the step-up converter as they have extremely low ESR and are available in small footprints. Place capacitors as close as possible to the device. While a 22μF input capacitor is sufficient for most applications. To further reduce input current ripple without limitations, use larger values.

Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the power is being supplied through long wires, such as from a wall adapter, a load step at the output induces ringing at the VIN pin. This ringing couples to the output and be mistaken as loop instability or damage the part. To reduce ringing that occurs between the inductance of the power source leads and CI, place "bulk" capacitance (electrolytic or tantalum) between CI and the power source.