SNVSCR4C July   2024  – December 2025 TLA431 , TLA432

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Temperature Coefficient
    2. 7.2 Dynamic Impedance
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 Closed Loop
        1. 8.4.1.1 Stability (Closed Loop)
      2. 8.4.2 Open Loop (Comparator)
  10. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Shunt Regulator/Reference
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Programming Output/Cathode Voltage
          2. 9.2.1.2.2 Total Accuracy
          3. 9.2.1.2.3 Start-Up Time
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Comparator With Integrated Reference
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Basic Operation
            1. 9.2.2.2.1.1 Overdrive
          2. 9.2.2.2.2 Output Voltage and Logic Input Level
            1. 9.2.2.2.2.1 Input Resistance
        3. 9.2.2.3 Application Curve
    3. 9.3 System Examples
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Nomenclature
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Dynamic Impedance

The dynamic impedance is defined as:

Equation 2. ZKA=VKAIKA

When the device operates with two external resistors (see Figure 6-8), the total dynamic impedance of the circuit is given by:

Equation 3. z'=VI

Which is approximately equal to:

Equation 4. ZKA1+R1R2

The VKA of the device can be affected by the dynamic impedance. The device test current Itest for VKA is specified in the Section 6.5. Any deviation from Itest can cause deviation on the output VKA. Figure 7-5 shows the effect of the dynamic impedance on the VKA.

TLA431 TLA432 Dynamic ImpedanceFigure 7-5 Dynamic Impedance