SWRU368C May   2018  – January 2021 CC3100 , CC3100MOD , CC3200 , CC3200MOD

 

  1. Overview
    1. 1.1 Document Scope
    2. 1.2 Overview
      1. 1.2.1 Features List
    3. 1.3 Host Driver Overview
    4. 1.4 Configurable Information Element
  2. Writing a Simple Networking Application
    1. 2.1 Overview
      1. 2.1.1 Basic Example Code
  3. Device Initialization
    1. 3.1 Overview
    2. 3.2 Host Interface
      1. 3.2.1 SPI Interface
      2. 3.2.2 UART Interface
        1. 3.2.2.1 Change UART Baud Rate
  4. Device Configurations
    1. 4.1 Overview
    2. 4.2 Device Parameters
    3. 4.3 WLAN Parameters
      1. 4.3.1 Advanced
    4. 4.4 Network Parameters
    5. 4.5 Internet and Networking Services Parameters
    6. 4.6 Power-Management Parameters
      1. 4.6.1 Overview
      2. 4.6.2 Power Policy
    7. 4.7 Scan Parameters
      1. 4.7.1 Scan Policy
  5. Socket
    1. 5.1 Overview
      1. 5.1.1 Transmission Control Protocol (TCP)
      2. 5.1.2 User Datagram Protocol (UDP)
    2. 5.2 Socket Connection Flow
    3. 5.3 TCP Connection Flow
      1. 5.3.1 Client Side
      2. 5.3.2 Server Side
    4. 5.4 UDP Connection Flow
      1. 5.4.1 Client Side
      2. 5.4.2 Server Side
    5. 5.5 Socket Options
      1. 5.5.1 Blocking vs NonBlocking
      2. 5.5.2 Secure Sockets
    6. 5.6 SimpleLink Supported Socket API
    7. 5.7 Number of Available Sockets
    8. 5.8 Packet Aggregation
  6. Device Hibernate
    1. 6.1 Overview
  7. Provisioning
    1. 7.1 Overview
    2. 7.2 SmartConfig
      1. 7.2.1 General Description
      2. 7.2.2 How to Use / API
        1. 7.2.2.1 Automatic Activation (Out of the Box)
        2. 7.2.2.2 Manual Activation
        3. 7.2.2.3 Stopping Smart Config
    3. 7.3 AP Mode
      1. 7.3.1 General Description
      2. 7.3.2 How to Use / API
      3. 7.3.3 Things to Note When Configuring AP Provisioning
    4. 7.4 WPS
      1. 7.4.1 General Description
      2. 7.4.2 How to Use / API
      3. 7.4.3 Example of Using WPS
      4. 7.4.4 Tradeoffs Between Provisioning Options
  8. Security
    1. 8.1 WLAN Security
      1. 8.1.1 Personal
      2. 8.1.2 Enterprise
        1. 8.1.2.1 General Description
        2. 8.1.2.2 How to Use / API
        3. 8.1.2.3 Example
        4. 8.1.2.4 Limitations
    2. 8.2 Secured Socket
      1. 8.2.1 General Description
      2. 8.2.2 How to Use / API
        1. 8.2.2.1 Selecting a Method
        2. 8.2.2.2 Selecting a Cipher Suit
        3. 8.2.2.3 Selecting the Secured Files for the Socket
        4. 8.2.2.4 Set Domain Name for Verification and SNI
      3. 8.2.3 Example of Using the SSL
      4. 8.2.4 Supported Cryptographic Algorithms
    3. 8.3 Limitations
      1. 8.3.1 Main Known Limitations
        1. 8.3.1.1 STA Mode
        2. 8.3.1.2 AP Mode
        3. 8.3.1.3 JavaScript Example
        4. 8.3.1.4 Host Driver Example
  9. AP Mode
    1. 9.1 General Description
    2. 9.2 Setting AP Mode – API
    3. 9.3 WLAN Parameters Configuration – API
    4. 9.4 WLAN Parameters Query – API
    5. 9.5 AP Network Configuration
    6. 9.6 DHCP Server Configuration
    7. 9.7 Setting Device URN
    8. 9.8 Asynchronous Events Sent to the Host
    9. 9.9 Example Code
  10. 10Peer to Peer (P2P)
    1. 10.1 General Description
      1. 10.1.1 Scope
      2. 10.1.2 Wi-Fi Direct Advantage
      3. 10.1.3 Support and Abilities of Wi-Fi Direct
      4. 10.1.4 Limitations
    2. 10.2 P2P APIs and Configuration
      1. 10.2.1 Configuring P2P Global Parameters
        1. 10.2.1.1 Set P2P Role
        2. 10.2.1.2 Set P2P Network Configuration
        3. 10.2.1.3 Set P2P Device Name
        4. 10.2.1.4 Set P2P Device Type
        5. 10.2.1.5 Set P2P Listen and Operation Channels
      2. 10.2.2 Configuring P2P Policy
        1. 10.2.2.1 Configure P2P Intent Value and Negotiation Initiator
      3. 10.2.3 Configuring P2P Profile Connection Policy
      4. 10.2.4 Discovering Remote P2P Peers
        1. 10.2.4.1 How to Start P2P Discovery
        2. 10.2.4.2 How to See/Get P2P Remote Peers (Network P2P List)
      5. 10.2.5 Negotiation Method
      6. 10.2.6 Manual P2P Connection
      7. 10.2.7 Manual P2P Disconnection
      8. 10.2.8 P2P Profiles
      9. 10.2.9 Removing P2P Profiles
    3. 10.3 P2P Connection Events
    4. 10.4 Use Cases and Configuration
      1. 10.4.1 Case 1 – Nailed P2P Client Low-Power Profile
      2. 10.4.2 Case 2 – Mobile Client Low-Power Profile
      3. 10.4.3 Case 3 – Nailed Center Plugged-in Profile
      4. 10.4.4 Case 4 – Mobile Center Profile
      5. 10.4.5 Case 5 – Mobile General-Purpose Profile
    5. 10.5 Example Code
  11. 11HTTP Server
    1. 11.1  Overview
    2. 11.2  Supported Features
    3. 11.3  HTTP Web Server Description
      1. 11.3.1 Overview
        1. 11.3.1.1 Details
    4. 11.4  HTTP GET Processing
      1. 11.4.1 Overview
      2. 11.4.2 Default Web Page
      3. 11.4.3 SimpleLink GET Tokens
      4. 11.4.4 User-Defined Tokens
      5. 11.4.5 HTML Sample Code With Dynamic HTML Content
    5. 11.5  HTTP POST Processing
      1. 11.5.1 Overview
      2. 11.5.2 SimpleLink POST Tokens
      3. 11.5.3 SimpleLink POST Actions
      4. 11.5.4 User-Defined Tokens
      5. 11.5.5 Redirect after POST
      6. 11.5.6 HTML Sample Code With POST and Dynamic HTML Content
    6. 11.6  Internal Web Page
    7. 11.7  Force AP Mode Support
    8. 11.8  Accessing the Web Page
      1. 11.8.1 SimpleLink in Station Mode
      2. 11.8.2 SimpleLink in AP Mode
    9. 11.9  HTTP Authentication Check
    10. 11.10 Handling HTTP Events in Host Using the SimpleLink Driver
    11. 11.11 SimpleLink Driver Interface the HTTP Web Server
      1. 11.11.1 Enable or Disable HTTP Server
      2. 11.11.2 Configure HTTP Port Number
      3. 11.11.3 Enable or Disable Authentication Check
      4. 11.11.4 Set or Get Authentication Name, Password, and Realm
      5. 11.11.5 Set or Get Domain Name
      6. 11.11.6 Set or Get URN Name
      7. 11.11.7 Enable or Disable ROM Web Pages Access
    12. 11.12 SimpleLink Predefined Tokens
      1. 11.12.1 GET Values
      2. 11.12.2 POST Values
      3. 11.12.3 POST Actions
      4. 11.12.4 HTTP Server Limitations
  12. 12mDNS
    1. 12.1 Overview
    2. 12.2 Protocol Detail
    3. 12.3 Implementation
      1. 12.3.1 Default Implementation
      2. 12.3.2 173
      3. 12.3.3 Start and Stop mDNS
      4. 12.3.4 mDNS Query – One Shot
      5. 12.3.5 mDNS Query – Continuous
      6. 12.3.6 mDNS Service Registration
    4. 12.4 Supported Features
    5. 12.5 Limitations
  13. 13Serial Flash File System
    1. 13.1 Overview
      1. 13.1.1 Summary of Instructions
      2.      File Creation
      3.      File Opening
      4.      File Closing
      5.      File Writing
      6.      File Reading
      7.      File Deleting
      8.      File Information
  14. 14Rx Filter
    1. 14.1 Overview
    2. 14.2 Detailed Description
    3. 14.3 Examples
    4. 14.4 Creating Trees
    5. 14.5 Host API
      1. 14.5.1 Code Example
    6. 14.6 Notes and Limitations
  15. 15Transceiver Mode
    1. 15.1  General Description
    2. 15.2  How to Use / API
    3. 15.3  Sending and Receiving
    4. 15.4  Changing Socket Properties
    5. 15.5  Internal Packet Generator
    6. 15.6  Transmitting CW (Carrier-Wave)
    7. 15.7  Connection Policies and Transceiver Mode
    8. 15.8  Notes about Receiving and Transmitting
      1. 15.8.1 Receiving
    9. 15.9  Use Cases
      1. 15.9.1 Sniffer
    10. 15.10 TX Continues
    11. 15.11 Ping
    12. 15.12 Transceiver Mode Limitations
  16. 16Rx Statistics
    1. 16.1 General Description
    2. 16.2 How to Use / API
    3. 16.3 Notes about Receiving and Transmitting
    4. 16.4 Use Cases
    5. 16.5 Rx Statistics Limitations
  17. 17Asynchronous Events
    1. 17.1 Overview
    2. 17.2 WLAN Events
    3. 17.3 Netapp Events
    4. 17.4 Socket Events
    5. 17.5 Device Events
  18. 18Configurable Info Element
    1. 18.1 General
    2. 18.2 Interface to Application
      1. 18.2.1 API Output
    3. 18.3 Total Maximum Size of all Information Elements
  19. 19Debug
    1. 19.1 Capture NWP Logs
      1. 19.1.1 Overview
      2. 19.1.2 Instructions
        1. 19.1.2.1 Configuring Pin Mux for CC32xx
        2. 19.1.2.2 Terminal Settings
        3. 19.1.2.3 Run Your Program
        4. 19.1.2.4 Send to TI Engineer
          1.        A Host Driver Architecture
            1.         A.1 Overview
              1.          A.1.1 SimpleLink WiFi Host Driver -– Platform-Independent Part
              2.          A.1.2 SimpleLink WiFi Host Driver – Platform-Dependent Part
              3.          A.1.3 SimpleLink WiFi Driver Configuration
              4.          A.1.4 User Application
            2.         A.2 Driver Data Flows
              1.          A.2.1 Transport Layer Protocol
              2.          A.2.2 Command and Command Complete
              3.          A.2.3 Data Transactions
                1.           A.2.3.1 Data Send (From Host to SimpleLink Network Processor)
                2.           A.2.3.2 Data Flow Control
                3.           A.2.3.3 Data Receive (From SimpleLink Network Processor to Host)
                4.           A.2.3.4 Blocking Receive
                5.           A.2.3.5 NonBlocking Receive
                  1.            B Error Codes
                    1.             B.1 Error Codes
                      1.              C How to Generate Certificates, Public Keys, and CAs
                        1.               C.1 Certificate Generation
                          1.                Revision History

Basic Example Code

When implementing a networking application, consider the different application blocks, the host driver software concepts described above, and system aspects such as hardware and operating system.

Figure 2-1 shows a state machine diagram that describes the basic software design.

GUID-893F0682-9FBE-4AD0-8232-1BA04E8178DF-low.pngFigure 2-1 Basic Networking Application State Machine

Figure 2-1 shows the different states described in this chapter, the host driver events that trigger the code to move between different states, and basic error-handling events.

An example of the state machine is implemented in the following code:

Init state – The following is an example of initializing the Wi-Fi subsystem as a WLAN station:

case INIT:
status = sl_Start(0, 0, 0);
if (status == ROLE_STA)
{
g_State = CONFIG;
}
else
{
g_State = SIMPLELINK_ERR;
}
break;

WLAN connection – The following is an example of WLAN and network event handlers, demonstrating the WLAN connection, waiting for a successful connection, and acquiring an IP address:

/* SimpleLink WLAN event handler */
void SimpleLinkWlanEventHandler(void *pWlanEvents)
{
SlWlanEvent_t *pWlan = (SlWlanEvent_t *)pWlanEvents;
    switch(pWlan->Event)
    {
        case SL_WLAN_CONNECT_EVENT:            
g_Event |= EVENT_CONNECTED;
memcpy(g_AP_Name, pWlan->EventData.STAandP2PModeWlanConnected.ssid_name, pWlan->EventData.STAandP2PModeWlanConnected.ssid_len);
        break;
        case SL_WLAN_DISCONNECT_EVENT:
g_DisconnectionCntr++;
       g_Event |= EVENT_DISCONNECTED;
g_DisconnectionReason = pWlan->EventData.STAandP2PModeDisconnected.reason_code;
memcpy(g_AP_Name, pWlan->EventData.STAandP2PModeWlanConnected.ssid_name, pWlan->EventData.STAandP2PModeWlanConnected.ssid_len);
        break;
        default:
        break;
    }
}
/* SimpleLink Networking event handler */
void SimpleLinkNetAppEventHandler(void *pNetAppEvent)
{
    SlNetAppEvent_t *pNetApp = (SlNetAppEvent_t *)pNetAppEvent;
    switch( pNetApp->Event )
    {
        case SL_NETAPP_IPV4_ACQUIRED:
            g_Event |= EVENT_IP_ACQUIRED;
g_Station_Ip = pNetApp->EventData.ipAcquiredV4.ip;
g_GW_Ip =  pNetApp->EventData.ipAcquiredV4.gateway;
g_DNS_Ip = pNetApp->EventData.ipAcquiredV4.dns;
break;
        default:
        break;
    }
}
.
.
.
/* initiating the WLAN connection */ 
case WLAN_CONNECTION:
status = sl_WlanConnect(User.SSID,strlen(User.SSID),0, 
&secParams, 0);
if (status == 0)
{
g_State = WLAN_CONNECTING;
}
else
{
g_State = SIMPLELINK_ERR;
}
/* waiting for SL_WLAN_CONNECT_EVENT to notify on a successful connection */ 
case WLAN_CONNECTING:
if (g_Event 
&EVENT_CONNECTED)
{
printf("Connected to %s\n", g_AP_Name);
g_State = WLAN_CONNECTED;
}
break;
/* waiting for SL_NETAPP_IPV4_ACQUIRED to notify on a receiving an IP address */
case WLAN_CONNECTED:
if (g_Event 
&EVENT_IP_ACQUIRED)
{
printf("Received IP address:%d.%d.%d.%d\n", (g_Station_Ip>>24)&0xFF,(g_Station_Ip>>16)&0xFF,(g_Station_Ip>>8)&0xFF,(g_Station_Ip&0xFF));
g_State = GET_SERVER_ADDR;
}
break;

Socket connection – The following is an example of querying for the remote server IP address by using the server name, creating a TCP socket, and connecting to the remote server socket:

case GET_SERVER_ADDR:
 status = sl_NetAppDnsGetHostByName(appData.HostName,
                                    strlen(appData.HostName),
                                    
&appData.DestinationIP, SL_AF_INET);
if (status == 0)
{
g_State = SOCKET_CONNECTION;
}
else
{
printf("Unable to reach Host\n");
g_State = SIMPLELINK_ERR;
}
break;
case SOCKET_CONNECTION:
Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(80);
/* Change the DestinationIP endianity, to big endian */
Addr.sin_addr.s_addr = sl_Htonl(appData.DestinationIP);
AddrSize = sizeof(SlSockAddrIn_t);
SockId = sl_Socket(SL_AF_INET,SL_SOCK_STREAM, 0);
if( SockId < 0 )
{
printf("Error creating socket\n\r");
status = SockId;
g_State = SIMPLELINK_ERR;
}
if (SockId >= 0)
{
status = sl_Connect(SockId, ( SlSockAddr_t *)
&Addr, AddrSize);
if( status >= 0 )
{
g_State = SOCKET_CONNECTED;
}
else
{
printf("Error connecting to socket\n\r");
g_State = SIMPLELINK_ERR;
}
}
break;

Data transactions – The following is an example of sending and receiving TCP data over the open socket:

case SOCKET_CONNECTED:
     /* Send data to the remote server */
     sl_Send(appData.SockID, appData.SendBuff, strlen(appData.SendBuff), 0);
    /* Receive data from the remote server */
    sl_Recv(appData.SockID, &appData.Recvbuff[0], MAX_RECV_BUFF_SIZE, 0);
            
break;

Socket disconnection – The following is an example of closing a socket:

case SOCKET_DISCONNECT:
    sl_Close(appData.SockID);
    /* Reopening the socket */
    g_State = SOCKET_CONNECTION;
    break;

Device hibernate – The following is an example of putting the Wi-Fi subsystem into hibernate state:

case SIMPLELINK_HIBERNATE:
    sl_Stop();
    g_State = …
    break;