TIDUF06 August   2022

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 PCB and Form Factor
      2. 2.2.2 Power Supply Design
        1. 2.2.2.1 POC Filter
        2. 2.2.2.2 Power Supply Considerations
          1. 2.2.2.2.1 Choosing External Components
          2. 2.2.2.2.2 Choosing the Buck 1 Inductor
          3. 2.2.2.2.3 Choosing the Buck 2 and Buck 3 Inductors
          4. 2.2.2.2.4 Functional Safety
    3. 2.3 Highlighted Products
      1. 2.3.1 DS90UB953-Q1
      2. 2.3.2 TPS650330-Q1
      3. 2.3.3 IMX623
    4. 2.4 System Design Theory
  8. 3Hardware, Testing Requirements, and Test Results
    1. 3.1 Required Hardware
      1. 3.1.1 Hardware Setup
      2. 3.1.2 FPD-Link III I2C Initialization
      3. 3.1.3 IMX623 Initialization
    2. 3.2 Testing and Results
      1. 3.2.1 Test Setup
        1. 3.2.1.1 Power Supplies Startup
        2. 3.2.1.2 Power Supply Startup – 1.8 V Rail and Serializer PDB Setup
      2. 3.2.2 Test Results
        1. 3.2.2.1 Power Supplies Start Up
        2. 3.2.2.2 Power Supply Output Voltage Ripple
        3. 3.2.2.3 Power Supply Load Currents
        4. 3.2.2.4 I2C Communications
  9. 4Design Files
    1. 4.1 Schematics
    2. 4.2 Bill of Materials
    3. 4.3 PCB Layout Recommendations
      1. 4.3.1 PMIC Layout Recommendations
      2. 4.3.2 PCB Layer Stackup
      3. 4.3.3 Serializer Layout Recommendations
      4. 4.3.4 Imager Layout Recommendations
      5. 4.3.5 Layout Prints
    4. 4.4 Altium Project
    5. 4.5 Gerber Files
    6. 4.6 Assembly Drawings
  10. 5Related Documentation
  11. 6Trademarks

TPS650330-Q1

To minimize form factor, a PMIC is selected to provide the power, supervision, and sequencing requirements for the system. A power topology consisting of three buck regulators and one LDO provides a balance between power efficiency and noise performance. A 2.2-MHz operating frequency is beneficial for two reasons: it avoids the especially sensitive frequencies of image sensor circuits (typically 1 MHz or less) and it avoids interfering in the AM radio band for automotive applications. The low noise, and high PSRR LDO of the PMIC can provide up to 300 mA of current with a tight output voltage tolerance (±1%) appropriate for the analog voltage rail requirements in ADAS camera applications. The PMIC offers programmable output voltages and sequencing, allowing the same power and serializer design to be reused with a variety of imagers depending on the vision application.