TIDUF88 October   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Accuracy of Bus Voltage Measuring
      2. 2.2.2 Shunt Current Measuring
      3. 2.2.3 Insulation Impedance Monitor
    3. 2.3 Highlighted Products
      1. 2.3.1 BQ79731-Q1
      2. 2.3.2 TPSI2140-Q1
      3. 2.3.3 ISO7841
      4. 2.3.4 SN6507
      5. 2.3.5 TPS7B6950
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Test Setup
    3. 3.3 Test Results
      1. 3.3.1 Bus Voltage Accuracy
      2. 3.3.2 Current Sensing Accuracy
      3. 3.3.3 Insulation Impedance Accuracy
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author

SN6507

The SN6507 is a high-voltage, high-frequency push-pull transformer driver providing isolated power in a small design size. The device comes with the push-pull topology benefits of simplicity, low electromagnetic interference (EMI), and flux cancellation to prevent transformer saturation. Further space savings are achieved through duty-cycle control, which reduces component count for wide-input ranges, and by selecting a high switching frequency, reducing the size of the transformer.

The device integrates a controller and two 0.5A N-channel metal-oxide semiconductor (NMOS) power switches that switch out of phase. The input operating range is programmed with precision undervoltage lockouts. The device is protected from fault conditions by overcurrent protection (OCP), adjustable undervoltage lockout (UVLO), overvoltage lockout (OVLO), thermal shutdown (TSD), and break-before-make circuitry.

The programmable soft start minimizes inrush currents and provides power supply sequencing for critical power-up requirements. Spread spectrum clocking (SSC) and pin-configurable slew rate control (SRC) further reduces radiated and conducted emissions for ultra-low EMI requirements.

The SN6507 is available in a 10-pin HVSSOP DGQ package. The device operation is characterized for a temperature range from –55°C to 125°C.