LMV358

ACTIVE

Dual, 5.5-V, 1-MHz, RRO operational amplifier

A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
LMV358A ACTIVE Dual, 5.5-V, 1-MHz, 4-mV offset voltage, RRO operational amplifier Faster slew rate (1.7 V/us), lower offset voltage (4 mV), lower power (0.08 mA), lower noise (33 nV/√Hz)
Same functionality with different pin-out to the compared device
TLV9002 ACTIVE Dual, 5.5-V, 1-MHz, RRIO operational amplifier for cost-optimized applications Rail-to-Rail input and output, wider voltage range (1.8 V to 5.5 V), lower offset voltage (1.5 mV), and improved offset voltage drift

Product details

Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.7 Rail-to-rail In to V-, Out GBW (typ) (MHz) 1 Slew rate (typ) (V/µs) 1 Vos (offset voltage at 25°C) (max) (mV) 7 Iq per channel (typ) (mA) 0.105 Vn at 1 kHz (typ) (nV√Hz) 39 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 5 Features Standard Amps Input bias current (max) (pA) 250000 CMRR (typ) (dB) 65 Iout (typ) (A) 0.04 Architecture Bipolar Input common mode headroom (to negative supply) (typ) (V) -0.2 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0.065 Output swing headroom (to positive supply) (typ) (V) -0.12
Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.7 Rail-to-rail In to V-, Out GBW (typ) (MHz) 1 Slew rate (typ) (V/µs) 1 Vos (offset voltage at 25°C) (max) (mV) 7 Iq per channel (typ) (mA) 0.105 Vn at 1 kHz (typ) (nV√Hz) 39 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 5 Features Standard Amps Input bias current (max) (pA) 250000 CMRR (typ) (dB) 65 Iout (typ) (A) 0.04 Architecture Bipolar Input common mode headroom (to negative supply) (typ) (V) -0.2 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0.065 Output swing headroom (to positive supply) (typ) (V) -0.12
SOIC (D) 8 29.4 mm² 4.9 x 6 TSSOP (PW) 8 19.2 mm² 3 x 6.4 VSSOP (DGK) 8 14.7 mm² 3 x 4.9
  • For an upgraded version - refer to LMV321A, LMV358A, and LMV324A
  • 2.7-V and 5-V performance
  • –40°C to +125°C operation
  • No crossover distortion
  • Low supply current
    • LMV321: 130 µA (typical)
    • LMV358: 210 µA (typical)
    • LMV324: 410 µA (typical)
  • Rail-to-rail output swing
  • ESD protection exceeds JESD 22
    • 2000-V human-body model
    • 1000-V charged-device model
  • For an upgraded version - refer to LMV321A, LMV358A, and LMV324A
  • 2.7-V and 5-V performance
  • –40°C to +125°C operation
  • No crossover distortion
  • Low supply current
    • LMV321: 130 µA (typical)
    • LMV358: 210 µA (typical)
    • LMV324: 410 µA (typical)
  • Rail-to-rail output swing
  • ESD protection exceeds JESD 22
    • 2000-V human-body model
    • 1000-V charged-device model

For an upgraded version with enhanced performance, please refer to LMV321A, LMV358A, and LMV324A.

The LMV321, LMV358, and LMV324 devices are single, dual, and quad low-voltage (2.7 V to 5.5 V) operational amplifiers with rail-to-rail output swing. These devices are the most cost-effective solutions for applications where low-voltage operation, space saving, and low cost are needed. These amplifiers are designed specifically for low-voltage (2.7 V to 5 V) operation, with performance specifications meeting or exceeding the LM358 and LM324 devices that operate from 5 V to 30 V. With package sizes down to one-half the size of the DBV (SOT-23) package, these devices can be used for a variety of applications.

For an upgraded version with enhanced performance, please refer to LMV321A, LMV358A, and LMV324A.

The LMV321, LMV358, and LMV324 devices are single, dual, and quad low-voltage (2.7 V to 5.5 V) operational amplifiers with rail-to-rail output swing. These devices are the most cost-effective solutions for applications where low-voltage operation, space saving, and low cost are needed. These amplifiers are designed specifically for low-voltage (2.7 V to 5 V) operation, with performance specifications meeting or exceeding the LM358 and LM324 devices that operate from 5 V to 30 V. With package sizes down to one-half the size of the DBV (SOT-23) package, these devices can be used for a variety of applications.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 6
Type Title Date
* Data sheet LMV3xx Low-Voltage Rail-to-Rail Output Operational Amplifier datasheet (Rev. Y) PDF | HTML 10 Aug 2023
E-book An Engineer’s Guide to Designing with Precision Amplifiers 29 Apr 2021
Circuit design Inverting Amplifier Circuit (Rev. C) PDF | HTML 18 Dec 2020
Application note Why Users Should Consider Upgrading Their LMV324, LMV358, and LMV321 Devices 15 Oct 2019
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Technical article Four ways to design an amplifier without a rail-to-rail op amp PDF | HTML 21 Jul 2016

Design & development

Please view the Design & development section on a desktop.

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos