SNAS378L November   2008  – February 2019 ADC14155QML-SP

PRODUCTION DATA.  

  1. Features
  2. Applications
    1.     Block Diagram
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Descriptions and Equivalent Circuits
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  ADC14155 Converter Electrical Characteristics DC Parameters
    6. 6.6  ADC14155 Converter Electrical Characteristics (Continued) DYNAMIC Parameters
    7. 6.7  ADC14155 Converter Electrical Characteristics (Continued) Logic and Power Supply Electrical Characteristics
    8. 6.8  ADC14155 Converter Electrical Characteristics (Continued) Timing and AC Characteristics
    9. 6.9  Timing Diagram
    10. 6.10 Transfer Characteristic
    11. 6.11 Typical Performance Characteristics, DNL, INL
    12. 6.12 Typical Performance Characteristics, Dynamic Performance
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Inputs
        1. 7.3.1.1 Differential Analog Input Pins
        2. 7.3.1.2 Driving The Analog Inputs
        3. 7.3.1.3 Input Common Mode Voltage
      2. 7.3.2 Reference Pins
      3. 7.3.3 Digital Inputs
        1. 7.3.3.1 Clock Inputs
        2. 7.3.3.2 Power-Down (PD)
        3. 7.3.3.3 Clock Mode Select/Data Format (CLK_SEL/DF)
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Radiation Environments
      1. 8.3.1 Total Ionizing Dose (TID)
      2. 8.3.2 Single Event Effects
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • NBA|48
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Differential Analog Input Pins

The ADC14155QML-SP has one pair of analog signal input pins, VIN+ and VIN–, which form a differential input pair. The input signal, VIN, is defined as

Equation 1. VIN = (VIN+) – (VIN–)

Figure 21 shows the expected input signal range. Note that the common mode input voltage, VCM, should be 1.5 V. Using VRM (pin 46 or 47) for VCM will ensure the proper input common mode level for the analog input signal. The peaks of the individual input signals should each never exceed 2.6 V. Each analog input pin of the differential pair should have a peak-to-peak voltage equal to the reference voltage, VREF, be 180° out of phase with each other and be centered around VCM.The peak-to-peak voltage swing at each analog input pin should not exceed the value of the reference voltage or the output data will be clipped.

ADC14155QML-SP 20210715.pngFigure 21. Expected Input Signal Range

For single frequency sine waves the full scale error, EFS, in LSB can be described as approximately

Equation 2. EFS = 16384 ( 1 – sin (90° + dev))

Where dev is the angular difference in degrees between the two signals having a 180° relative phase relationship to each other (see Figure 22). For single frequency inputs, angular errors result in a reduction of the effective full scale input. For complex waveforms, however, angular errors will result in distortion.

ADC14155QML-SP 20210716.pngFigure 22. Angular Errors Between The Two Input Signals Will Reduce The Output Level Or Cause Distortion

It is recommended to drive the analog inputs with a source impedance less than 100 Ω. Matching the source impedance for the differential inputs will improve even ordered harmonic performance (particularly second harmonic).

Table 2 indicates the input to output relationship of the ADC14155.

Table 2. Input To Output Relationship

VIN+ VIN– Binary Output 2’s Complement Output
VCM – VREF / 2 VCM + VREF / 2 00 0000 0000 0000 10 0000 0000 0000 Negative Full-Scale
VCM – VREF / 4 VCM + VREF / 4 01 0000 0000 0000 11 0000 0000 0000
VCM VCM 10 0000 0000 0000 00 0000 0000 0000 Mid-Scale
VCM + VREF / 4 VCM – VREF / 4 11 0000 0000 0000 01 0000 0000 0000
VCM + VREF / 2 VCM – VREF / 2 11 1111 1111 1111 01 1111 1111 1111 Positive Full-Scale