SPRSP98 November   2023 AM625SIP

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
    1. 3.1 Functional Block Diagram
  5. Device Comparison
    1. 4.1 Related Products
  6. Terminal Configuration and Functions
    1. 5.1 Pin Diagrams
    2. 5.2 Pin Attributes and Signal Descriptions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Operating Performance Points
    5. 6.5 Thermal Resistance Characteristics
      1. 6.5.1 Thermal Resistance Characteristics for AMK Package
    6. 6.6 Timing and Switching Characteristics
      1. 6.6.1 Power Supply Requirements
        1. 6.6.1.1 Power Supply Sequencing
  8. Applications, Implementation, and Layout
    1. 7.1 Peripheral- and Interface-Specific Design Information
      1. 7.1.1 Integrated LPDDR4 SDRAM Information
  9. Device and Documentation Support
    1. 8.1 Device Nomenclature
      1. 8.1.1 Standard Package Symbolization
      2. 8.1.2 Device Naming Convention
    2. 8.2 Tools and Software
    3. 8.3 Documentation Support
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Packaging Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • AMK|425
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Features

Processor Cores:

  • Up to Quad 64-bit Arm® Cortex®-A53 microprocessor subsystem at up to 1.4 GHz
    • Quad-core Cortex-A53 cluster with 512KB L2 shared cache with SECDED ECC
    • Each A53 Core has 32KB L1 DCache with SECDED ECC and 32KB L1 ICache with
      Parity protection
  • Single-core Arm® Cortex®-M4F MCU at up to
    400 MHz
    • 256KB SRAM with SECDED ECC
  • Dedicated Device/Power Manager

Multimedia:

  • Display subsystem
    • Dual display support
    • 1920x1080 @ 60fps for each display
    • 1x 2048x1080 + 1x 1280x720
    • Up to 165 MHz pixel clock support with Independent PLL for each display
    • OLDI (4 lanes LVDS - 2x) and
      DPI (24-bit RGB LVCMOS)
    • Support safety feature such as freeze frame detection and MISR data check
  • 3D Graphics Processing Unit
    • 1 pixel per clock or higher
    • Fillrate greater than 500 Mpixels/sec
    • >500 MTexels/s, >8 GFLOPs
    • Supports at least 2 composition layers
    • Supports up to 2048x1080 @60fps
    • Supports ARGB32, RGB565 and YUV formats
    • 2D graphics capable
    • OpenGL ES 3.1, Vulkan 1.2
  • One Camera Serial interface (CSI-Rx) - 4 Lane with DPHY
    • MIPI® CSI-2 v1.3 Compliant + MIPI D-PHY 1.2
    • Support for 1,2,3 or 4 data lane mode up to 1.5Gbps per lane
    • ECC verification/correction with CRC check + ECC on RAM
    • Virtual Channel support (up to 16)
    • Ability to write stream data directly to DDR via DMA

Memory Subsystem:

  • Up to 816KB of On-chip RAM
    • 64KB of On-chip RAM (OCSRAM) with SECDED ECC , Can be divided into smaller banks in increments of 32KB for as many as 2 separate memory banks
    • 256KB of On-chip RAM with SECDED ECC in SMS Subsystem
    • 176KB of On-chip RAM with SECDED ECC in SMS Subsystem for TI security firmware
    • 256KB of On-chip RAM with SECDED ECC in Cortex-M4F MCU subsystem
    • 64KB of On-chip RAM with SECDED ECC in Device/Power Manager Subsystem
  • DDR Subsystem (DDRSS)
    • Integrated 512MB LPDDR4 SDRAM
    • Supports speeds up to 1600 MT/s
    • 16-Bit data bus with inline ECC

Security:

  • Secure boot supported
    • Hardware-enforced Root-of-Trust (RoT)
    • Support to switch RoT via backup key
    • Support for takeover protection, IP protection, and anti-roll back protection
  • Trusted Execution Environment (TEE) supported
    • Arm TrustZone® based TEE
    • Extensive firewall support for isolation
    • Secure watchdog/timer/IPC
    • Secure storage support
    • Replay Protected Memory Block (RPMB) support
  • Dedicated Security Controller with user programmable HSM core and dedicated security DMA & IPC subsystem for isolated processing
  • Cryptographic acceleration supported
    • Session-aware cryptographic engine with ability to auto-switch key-material based on incoming data stream
      • Supports cryptographic cores
    • AES – 128-/192-/256-Bit key sizes
    • SHA2 – 224-/256-/384-/512-Bit key sizes
    • DRBG with true random number generator
    • PKA (Public Key Accelerator) to Assist in RSA/ECC processing for secure boot
  • Debugging security
    • Secure software controlled debug access
    • Security aware debugging

PRU Subsystem:

  • Dual-core Programmable Real-Time Unit Subystem (PRUSS) running up to 333 MHz
  • Intended for driving GPIO for cycle accurate protocols such as additional:
    • General Purpose Input/Output (GPIO)
    • UARTs
    • I2C
    • External ADC
  • 16KByte program memory per PRU with
    SECDED ECC
  • 8KB data memory per PRU with SECDED ECC
  • 32KB general purpose memory with
    SECDED ECC
  • CRC32/16 HW accelerator
  • Scratch PAD memory with 3 banks of
    30 x 32-bit registers
  • 1 Industrial 64-bit timer with 9 capture and 16 compare events, along with slow and fast compensation
  • 1 interrupt controller (INTC), minimum of 64 input events supported

High-Speed Interfaces:

  • Integrated Ethernet switch supporting
    (total of 2 external ports)
    • RMII(10/100) or RGMII (10/100/1000)
    • IEEE1588 (Annex D, Annex E, Annex F with 802.1AS PTP)
    • Clause 45 MDIO PHY management
    • Packet Classifier based on ALE engine with 512 classifiers
    • Priority based flow control
    • Time sensitive networking (TSN) support
    • Four CPU H/W interrupt Pacing
    • IP/UDP/TCP checksum offload in hardware
  • Two USB2.0 Ports
    • Port configurable as USB host, USB peripheral, or USB Dual-Role Device (DRD mode)
    • Integrated USB VBUS detection

General Connectivity:

  • 9x Universal Asynchronous Receiver-Transmitters (UART)
  • 5x Serial Peripheral Interface (SPI) controllers
  • 6x Inter-Integrated Circuit (I2C) ports
  • 3x Multichannel Audio Serial Ports (McASP)
    • Transmit and Receive Clocks up to 50 MHz
    • Up to 16/10/6 Serial Data Pins across 3x McASP with Independent TX and RX Clocks
    • Supports Time Division Multiplexing (TDM), Inter-IC Sound (I2S), and Similar Formats
    • Supports Digital Audio Interface Transmission (SPDIF, IEC60958-1, and AES-3 Formats)
    • FIFO Buffers for Transmit and Receive
      (256 Bytes)
    • Support for audio reference output clock
  • 3x enhanced PWM modules (ePWM)
  • 3x enhanced Quadrature Encoder Pulse modules (eQEP)
  • 3x enhanced Capture modules (eCAP)
  • General-Purpose I/O (GPIO), All LVCMOS I/O can be configured as GPIO
  • 3x Controller Area Network (CAN) modules with CAN-FD support
    • Conforms w/ CAN Protocol 2.0 A, B and ISO 11898-1
    • Full CAN FD support (up to 64 data bytes)
    • Parity/ECC check for Message RAM
    • Speed up to 8Mbps

Media and Data Storage:

  • 3x Multi-Media Card/Secure Digital®
    (MMC/SD®/SDIO) interface
    • 1x 8-bit eMMC interface up to HS200 speed
    • 2x 4-bit SD/SDIO interface up to UHS-I
    • Compliant with eMMC 5.1, SD 3.0 and
      SDIO Version 3.0
  • 1× General-Purpose Memory Controller (GPMC) up to 133 MHz
    • Flexible 8- and 16-Bit Asynchronous Memory Interface With up to four Chip (22-bit address) Selects (NAND, NOR, Muxed-NOR, and SRAM)
    • Uses BCH Code to Support 4-, 8-, or 16-Bit ECC
    • Uses Hamming Code to Support 1-Bit ECC
    • Error Locator Module (ELM)
      • Used With the GPMC to Locate Addresses of Data Errors From Syndrome Polynomials Generated Using a BCH Algorithm
      • Supports 4-, 8-, and 16-Bit Per 512-Byte Block Error Location Based on BCH Algorithms
  • OSPI/QSPI with DDR / SDR support
    • Support for Serial NAND and Serial NOR flash devices
    • 4GBytes memory address support
    • XIP mode with optional on-the-fly encryption

Power Management:

  • Low power modes supported by Device/Power Manager
    • Partial IO support for CAN/GPIO/UART wakeup
    • DeepSleep
    • MCU Only
    • Standby
    • Dynamic frequency scaling for Cortex-A53

Optimal Power Management Solution:

  • Recommended TPS65219 Power Management ICs (PMIC)
    • Companion PMIC specially designed to meet device power supply requirements
    • Flexible mapping and factory programmed configurations to support different use cases

Boot Options:

  • UART
  • I2C EEPROM
  • OSPI/QSPI Flash
  • GPMC NOR/NAND Flash
  • Serial NAND Flash
  • SD Card
  • eMMC
  • USB (host) boot from Mass Storage device
  • USB (device) boot from external host (DFU mode)
  • Ethernet

Technology / Package:

  • 16-nm technology
  • 13 mm x 13 mm, 0.5-mm pitch, 425-pin
    FCCSP BGA (AMK)