SCHS051H November   1998  – February 2020 CD4066B

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Bidirectional Signal Transmission Via Digital Control Logic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|14
  • PW|14
  • N|14
  • NS|14
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Vos Switch output voltage VDD = 5 V
Vis = 0 V
0.4 V
VDD = 5 V
Vis = 5 V
4.6 V
VDD = 10 V
Vis = 0 V
0.5 V
VDD = 10 V
Vis = 10 V
9.5 V
VDD = 15 V
Vis = 0 V
1.5 V
VDD = 15 V
Vis = 15 V
13.5 V
Δron On-state resistance difference between any two switches RL = 10 kΩ, VC = VDD VDD = 5 V 15 Ω
VDD = 10 V 10
VDD = 15 V 5
THD Total harmonic distortion VC = VDD = 5 V, VSS = –5 V,
Vis(p-p) = 5 V (sine wave centered on 0 V),
RL = 10 kΩ, fis = 1-kHz sine wave
0.4%
–3-dB cutoff frequency
(switch on)
VC = VDD = 5 V, VSS = –5 V, Vis(p-p) = 5 V
(sine wave centered on 0 V), RL = 1 kΩ
40 MHz
–50-dB feedthrough
frequency (switch off)
VC = VSS = –5 V, Vis(p-p) = 5 V
(sine wave centered on 0 V), RL = 1 kΩ
1 MHz
–50-dB crosstalk frequency VC(A) = VDD = 5 V,
VC(B) = VSS = –5 V,
Vis(A) = 5 Vp-p, 50-Ω source,
RL = 1 kΩ
8 MHz
Cis Input capacitance VDD = 5 V, VC = VSS = –5 V 8 pF
Cos Output capacitance VDD = 5 V, VC = VSS = –5 V 8 pF
Cios Feedthrough VDD = 5 V, VC = VSS = –5 V 0.5 pF
VIHC Control input, high voltage See Figure 7 VDD = 5 V 3.5 V
VDD = 10 V 7
VDD = 15 V 11
Crosstalk
(control input to signal output)
VC = 10 V (square wave),
tr, tf = 20 ns, RL = 10 kΩ
VDD = 10 V
50 mV
Turnon and turnoff
propagation delay
VIN = VDD, tr, tf = 20 ns,
CL = 50 pF, RL = 1 kΩ
VDD = 5 V 35 70 ns
VDD = 10 V 20 40
VDD = 15 V 15 30
Maximum control input
repetition rate
Vis = VDD, VSS = GND,
RL = 1 kΩ to GND,
CL = 50 pF,
VC = 10 V (square wave
centered on 5 V), tr, tf = 20 ns,
Vos = 1/2 Vos at 1 kHz
VDD = 5 V 6 MHz
VDD = 10 V 9
VDD = 15 V 9.5
CI Input capacitance 5 7.5 pF
Iis Switch input current VDD = 5 V
Vis = 0 V
TA = –55°C 0.64 mA
TA = –40°C 0.61
TA = 25°C 0.51
TA = 85°C 0.42
TA = 125°C 0.36
VDD = 5 V
Vis = 5 V
TA = –55°C –0.64 mA
TA = –40°C –0.61
TA = 25°C –0.51
TA = 85°C –0.42
TA = 125°C –0.36
VDD = 10 V
Vis = 0 V
TA = –55°C 1.6 mA
TA = –40°C 1.5
TA = 25°C 1.3
TA = 85°C 1.1
TA = 125°C 0.9
VDD = 10 V
Vis = 10 V
TA = –55°C –1.6 mA
TA = –40°C –1.5
TA = 25°C –1.3
TA = 85°C –1.1
TA = 125°C –0.9
VDD = 15 V
Vis = 0 V
TA = –55°C 4.2 mA
TA = –40°C 4
TA = 25°C 3.4
TA = 85°C 2.8
TA = 125°C 2.4
VDD = 15 V
Vis = 15 V
TA = –55°C –4.2 mA
TA = –40°C –4
TA = 25°C –3.4
TA = 85°C –2.8
TA = 125°C –2.4
IDD Quiescent device current VIN = 0 to 5 V
VDD = 5 V
TA = –55°C 0.25 µA
TA = –40°C 0.25
TA = 25°C 0.01 0.25
TA = 85°C 7.5
TA = 125°C 7.5
VIN = 0 to 10 V
VDD = 10 V
TA = –55°C 0.5 µA
TA = –40°C 0.5
TA = 25°C 0.01 0.5
TA = 85°C 15
TA = 125°C 15
VIN = 0 to 15 V
VDD = 15 V
TA = –55°C 1 µA
TA = –40°C 1
TA = 25°C 0.01 1
TA = 85°C 30
TA = 125°C 30
VIN = 0 to 20 V
VDD = 20 V
TA = –55°C 5 µA
TA = –40°C 5
TA = 25°C 0.02 5
TA = 85°C 150
TA = 125°C 150
ron On-state resistance (max) to CD4066B EQ_1.gif

VC = VDD,
RL = 10 kΩ returned Vis = VSS to VDD
VDD = 5 V TA = –55°C 800 Ω
TA = –40°C 850
TA = 25°C 470 1050
TA = 85°C 1200
TA = 125°C 1300
VDD = 10 V TA = –55°C 310
TA = –40°C 330
TA = 25°C 180 400
TA = 85°C 500
TA = 125°C 500
VDD = 15 V TA = –55°C 200
TA = –40°C 210
TA = 25°C 125 240
TA = 85°C 300
TA = 125°C 320
VILC Control input,
low voltage (max)
|Iis| < 10 µA,
Vis = VSS, VOS = VDD, and
Vis = VDD, VOS = VSS
VDD = 5 V TA = –55°C 1 V
TA = –40°C 1
TA = 25°C 1
TA = 85°C 1
TA = 125°C 1
VDD = 10 V TA = –55°C 2
TA = –40°C 2
TA = 25°C 2
TA = 85°C 2
TA = 125°C 2
VDD = 15 V TA = –55°C 2
TA = –40°C 2
TA = 25°C 2
TA = 85°C 2
TA = 125°C 2
IIN Input current (max) Vis ≤ VDD, VDD – VSS = 18 V,
VCC ≤ VDD – VSS
VDD = 18 V
TA = –55°C ±0.1 µA
TA = –40°C ±0.1
TA = 25°C ±10–5 ±0.1
TA = 85°C ±1
TA = 125°C ±1