SNIS139F February   2005  – January 2024 LM95231

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Operating Ratings
    3. 5.3 Temperature-to-Digital Converter Characteristics
    4. 5.4 Logic Electrical Characteristics Digital DC Characteristics
    5. 5.5 Logic Electrical Characteristics SMBus Digital Switching Characteristics
    6. 5.6 Typical Performance Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Conversion Sequence
      2. 6.3.2 Power-On-Default States
      3. 6.3.3 SMBus Interface
      4. 6.3.4 Temperature Data Format
      5. 6.3.5 SMBDAT Open-Drain Output
      6. 6.3.6 Diode Fault Detection
      7. 6.3.7 Communicating with the LM95231
      8. 6.3.8 Serial Interface Reset
      9. 6.3.9 One-Shot Conversion
  8. Registers
    1. 7.1 LM95231 Registers
    2. 7.2 Status Register
    3. 7.3 Configuration Register
    4. 7.4 Remote Diode Filter Control Register
    5. 7.5 Remote Diode Model Type Select Register
    6. 7.6 Remote TruTherm Mode Control
    7. 7.7 Local and Remote MSB and LSB Temperature Registers
      1. 7.7.1 Local Temperature MSB
      2. 7.7.2 Local Temperature LSB
      3. 7.7.3 Remote Temperature MSB
      4. 7.7.4 Remote Temperature LSB
    8. 7.8 Manufacturers ID Register
    9. 7.9 Die Revision Code Register
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Diode Non-Ideality
        1. 8.2.1.1 Diode Non-Ideality Factor Effect on Accuracy
        2. 8.2.1.2 Calculating Total System Accuracy
        3. 8.2.1.3 Compensating for Different Non-Ideality
  10. Layout
    1. 9.1 PCB Layout for Minimizing Noise
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Serial Interface Reset

In the event that the SMBus Master is RESET while the LM95231 is transmitting on the SMBDAT line, the LM95231 must be returned to a known state in the communication protocol. This may be done in one of two ways:

  1. When SMBDAT is LOW, the LM95231 SMBus state machine resets to the SMBus idle state if either SMBDAT or SMBCLK are held low for more than 35ms (tTIMEOUT). Note that according to SMBus specification 2.0 all devices are to timeout when either the SMBCLK or SMBDAT lines are held low for 25-35ms. Therefore, to insure a timeout of all devices on the bus the SMBCLK or SMBDAT lines must be held low for at least 35ms.
  2. When SMBDAT is HIGH, have the master initiate an SMBus start. The LM95231 will respond properly to an SMBus start condition at any point during the communication. After the start the LM95231 will expect an SMBus Address address byte.