SLVS977B February   2010  – July 2016 TPS61325

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  LED High-current Regulators, Unused Inputs
      2. 9.3.2  Safety Timer Accuracy
      3. 9.3.3  Current Limit Operation
      4. 9.3.4  Start-Up Sequence
      5. 9.3.5  Power Good (Flash Ready)
      6. 9.3.6  LED Temperature Monitoring
      7. 9.3.7  Hot Die Detector
      8. 9.3.8  Undervoltage Lockout
      9. 9.3.9  Storage Capacitor Active Cell Balancing
      10. 9.3.10 RED Light Privacy Indicator
      11. 9.3.11 White LED Privacy Indicator
      12. 9.3.12 Storage Capacitor, Precharge Voltage Calibration
      13. 9.3.13 Storage Capacitor, Adaptive Precharge Voltage
      14. 9.3.14 Serial Interface Description
        1. 9.3.14.1 F/S-Mode Protocol
        2. 9.3.14.2 HS-Mode Protocol
    4. 9.4 Device Functional Modes
      1. 9.4.1  Down Mode In Voltage Regulation Mode
      2. 9.4.2  Power-Save Mode Operation, Efficiency
      3. 9.4.3  Mode Of Operation: DC-Light and Flashlight
      4. 9.4.4  Flash Strobe Is Level Sensitive (STT = 0): LED Strobe Follows STRB0 and STRB1 Inputs
      5. 9.4.5  Flash Strobe Is Leading Edge Sensitive (STT = 1): One-Shot LED Strobe
      6. 9.4.6  LED Failure Modes and Overvoltage Protection
      7. 9.4.7  Hardware Voltage Mode Selection
      8. 9.4.8  Flashlight Blanking (Tx-MASK)
      9. 9.4.9  Shutdown
      10. 9.4.10 Thermal Shutdown
    5. 9.5 Programming
      1. 9.5.1 TPS6132x I2C Update Sequence
    6. 9.6 Register Maps
      1. 9.6.1  Slave Address Byte
      2. 9.6.2  Register Address Byte
      3. 9.6.3  REGISTER0 (address = 0x00)
      4. 9.6.4  REGISTER1 (address = 0x01)
      5. 9.6.5  REGISTER2 (address = 0x02)
      6. 9.6.6  REGISTER3 (address = 0x03)
      7. 9.6.7  REGISTER4 (address = 0x04)
      8. 9.6.8  REGISTER5 (address = 0x05)
      9. 9.6.9  REGISTER6 (address = 0x06)
      10. 9.6.10 REGISTER7 (address = 0x07)
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 4100-mA Two White High-Power LED Flashlight With Storage Capacitor
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Inductor Selection
          2. 10.2.1.2.2 Input Capacitor
          3. 10.2.1.2.3 Output Capacitor
          4. 10.2.1.2.4 NTC Selection
          5. 10.2.1.2.5 Checking Loop Stability
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Other Application Circuit Examples
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 Thermal Considerations
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Community Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage(2) AVIN, VOUT, SW, LED1, LED2, LED3, SCL, SDA, STRB0, STRB1, GPIO/PG, HC_SEL, Tx-MASK, TS, and BAL pins –0.3 7 V
Current GPIO/PG pin ±25 mA
Power dissipation Internally limited
Operating ambient temperature(3), TA –40 85 °C
Maximum operating junction temperature, TJ(MAX) 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to network ground terminal.
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA(max)) is dependent on the maximum operating junction temperature (TJ(max)), the maximum power dissipation of the device in the application (PD(max)), and the junction-to-ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA(max) = TJ(max) - ( RθJA × PD(max) )

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN Input voltage 2.5 3.6 5.5 V
VOUT Output voltage Current regulation mode VIN 5.5 V
Voltage regulation mode 3.825 5.7
L Inductor 1.3 2.2 2.9 µH
CIN Input capacitor 10 µF
COUT Output capacitor (effective value) 3 10 µF

7.4 Thermal Information

THERMAL METRIC(1) TPS61325 UNIT
YFF (DSBGA)
20 PINS
RθJA Junction-to-ambient thermal resistance 75.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.4 °C/W
RθJB Junction-to-board thermal resistance 13.3 °C/W
ψJT Junction-to-top characterization parameter 2 °C/W
ψJB Junction-to-board characterization parameter 13.3 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

Unless otherwise noted the specification applies for VIN = 3.6 V over an operating junction temp. –40°C ≤ TJ ≤ 125°C;
Circuit in Parameter Measurement Information (unless otherwise noted). Typical values are for TJ = 25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENT
VIN Input voltage range 2.5 5.5 V
IQ Operating quiescent current into AVIN IOUT = 0 mA, device not switching, –40°C ≤ TJ ≤ 85°C 590 700 µA
IOUT(DC) = 0 mA, PWM operation
VOUT = 4.95 V, voltage regulation mode
11.3 mA
ISD Shutdown current HC_SEL = 0, –40°C ≤ TJ ≤ 85°C 1 5 µA
ISTBY Standby current HC_SEL = 1, storage capacitor balanced
–40°C ≤ TJ ≤ 85°C
2 12 µA
Precharge current 0 V ≤ VOUT ≤ 3.3 V, device in precharge
mode, –40°C ≤ TJ ≤ 85°C
80 180 220 mA
Precharge termination threshold VOUT rising, –40°C ≤ TJ ≤ 85°C 3.35 3.6 V
Precharge hysteresis (referred to VOUT) 40 75 mV
VUVLO Undervoltage lockout threshold
(analog circuitry)
VIN falling 2.3 2.4 V
OUTPUT
VOUT Output voltage range Current regulation mode VIN 5.5 V
Voltage regulation mode 3.825 5.7
Internal feedback voltage accuracy 2.5 V ≤ VIN ≤ 4.8 V, –20°C ≤ TJ ≤ 125°C
Boost mode, PWM voltage regulation
–2% 2%
Power-save mode ripple voltage IOUT = 10 mA 0.015 VOUT VP-P
OVP Output overvoltage protection VOUT rising, 0000 ≤ OV ≤ 0100 4.5 4.65 4.8 V
VOUT rising, 0101 ≤ OV ≤ 1111 5.8 6 6.2
Output overvoltage protection hysteresis VOUT falling, 0101 ≤ OV ≤ 1111 0.15 V
POWER SWITCH
rDS(on) Switch MOSFET on-resistance VOUT = VGS = 3.6 V 90
Rectifier MOSFET on-resistance VOUT = VGS = 3.6 V 135
Ilkg(SW) Leakage into SW VOUT = 0 V, SW = 3.6 V, –40°C ≤ TJ ≤ 85°C 0.3 4 µA
Ilim Rectifier valley current limit (openloop) VOUT = 4.95 V, HC_SEL = 0, –20°C ≤ TJ ≤ 85°C,
PWM operation, ILIM bit = 0
775 1150 1600 mA
VOUT = 4.95 V, HC_SEL = 0, –20°C ≤ TJ ≤ 85°C,
PWM operation, ILIM bit = 1
1050 1600 2225
VOUT = 4.95 V, HC_SEL = 1, Tx-MASK = 0,
–20°C ≤ TJ ≤ 85°C, PWM operation, ILIM bit = 0
–85 30 150
VOUT = 4.95 V, HC_SEL = 1, Tx-MASK = 0,
–20°C ≤ TJ ≤ 85°C, PWM operation, ILIM bit = 1
175 250 300
OSCILLATOR
fOSC Oscillator frequency 1.92 MHz
fACC Oscillator frequency –10% 7%
THERMAL SHUTDOWN, HOT DIE DETECTOR
Thermal shutdown 140 160 °C
Thermal shutdown hysteresis 20 °C
Hot die detector accuracy –8 8 °C
LED CURRENT REGULATOR
LED1 and LED3 current accuracy HC_SEL = 0 0.4 V ≤ VLED1/3 ≤ 2 V, 0 mA < ILED1/3 ≤ 111 mA,
TJ = 85°C
–10% 10%
0.4 V ≤ VLED2 ≤ 2 V, ILED1/3 > 111 mA, TJ = 85°C –7.5% 7.5%
LED2 current accuracy 0.4 V ≤ VLED2 ≤ 2 V, 0 mA < ILED2 ≤ 250 mA,
TJ = 85°C
–10% 10%
0.4 V ≤ VLED2 ≤ 2 V, ILED2 > 250 mA, TJ = 85°C –7.5% 7.5%
LED1 and LED3 current accuracy HC_SEL = 1 0.4 V ≤ VLED1/3 ≤ 2 V, 0 mA < ILED1/3 ≤ 1027 mA,
TJ = 85°C
–10% 10%
LED2 current accuracy 0.4 V ≤ VLED2 ≤ 2 V, 0 mA < ILED2 ≤ 2052 mA,
TJ = 85°C
–10% 10%
LED1 and LED3 current matching HC_SEL = 0 VLED1/3 = 1 V, ILED1/3 = 444 mA, TJ = 85°C –7.5% 7.5%
LEDx current temperature coefficient 0.05 %/°C
INDLED current accuracy 1.5 V ≤ (VIN – VINDLED) ≤ 2.5 V,
0000 ≤ INDC ≤ 0111, TJ = 25°C
–20% 20%
INDLED current temperature coefficient 0.04 %/°C
VDO LEDx sense voltage ILEDx = full-scale current, HC_SEL = 0 400 mV
LEDx sense voltage ILED1/3 = full-scale current, HC_SEL = 1 400 450
VOUT dropout voltage IOUT = –15.8 mA, TJ = 25°C, device not switching 250
LEDx input leakage current VLEDx = VOUT = 5 V, –40°C ≤ TJ ≤ 85°C 0.1 4 µA
INDLED input leakage current VINDLED = 0 V, –40°C ≤ TJ ≤ 85°C 0.1 1 µA
STORAGE CAPACITOR ACTIVE CELL BALANCING
Active cell balancing circuitry quiescent current into VOUT HC_SEL = 1, storage capacitor balanced
–40°C ≤ TJ ≤ 85°C
1.7 3 µA
Active cell balancing accuracy (VOUT – VBAL) vs BAL voltage difference,
Storage capacitor balanced HC_SEL = 1, VOUT = 5.7 V
–100 100 mV
BAL output drive capability VOUT = 4.95 V, Sink and source current ±10 ±15 mA
Active discharge resistor HC_SEL = 0, device in shutdown mode
VOUT to BAL and BAL to GND
0.85 1.5
LED TEMPERATURE MONITORING
IO(TS) Temperature sense current source Thermistor bias current 23.8 µA
TS resistance (warning temperature) LEDWARN bit = 1, TJ ≥ 25°C 39 44.5 50
TS resistance (hot temperature) LEDHOT bit = 1, TJ ≥ 25°C 12.5 14.5 16.5
SDA, SCL, GPIO/PG, Tx-MASK, STRB0, STRB1, HC_SEL
V(IH) High-level input voltage 1.2 V
V(IL) Low-level input voltage 0.4 V
V(OL) Low-level output voltage (SDA) IOL = 8 mA 0.3 V
Low-level output voltage (GPIO) DIR = 1, IOL = 5 mA 0.3
V(OH) High-level output voltage (GPIO) DIR = 1, GPIOTYPE = 0, IOH = 8 mA VIN - 0.4 V
I(LKG) Logic input leakage current Input connected to VIN or GND, –40°C ≤ TJ ≤ 85°C 0.01 0.1 µA
RPD STRB0, STRB1 pull-down resistance STRB0, STRB1 ≤ 0.4 V 350
Tx-MASK pull-down resistance Tx-MASK ≤ 0.4 V 350
HC_SEL pull-down resistance HC_SEL ≤ 0.4 V 350
C(IN) SDA input capacitance SDA = VIN or GND 9 pF
SCL input capacitance SCL = VIN or GND 4
GPIO/PG input capacitance DIR = 0, GPIO/PG = VIN or GND 9
STRB0 input capacitance STRB0 = VIN or GND 3
STRB1 input capacitance STRB1 = VIN or GND 3
HC_SEL input capacitance HC_SEL = VIN or GND 3.5
Tx-MASK input capacitance Tx-MASK = VIN or GND 4
TIMING
Start-up time From shutdown into DC-light mode, HC_SEL = 0,
ILED = 111 mA
1.5 ms
LED current settling time(1) triggered by a rising edge on STRB0 MODE_CTRL = 10, HC_SEL = 0,
ILED2 = from 0 mA to 890 mA
400 µs
MODE_CTRL = 10, HC_SEL = 1,
ILED2 = from 0 mA to 2050 mA
16
LED current settling time(1) triggered by TxMASK MODE_CTRL = 10, HC_SEL = 0
ILED2 = from 890 mA to 390 mA
15 µs
(1) Setting time to ±15% of the target value.

7.6 Timing Requirements

PARAMETER(1) TEST CONDITIONS MIN MAX UNIT
f(SCL) SCL clock frequency Standard mode 100 kHz
Fast mode 400 kHz
High-speed mode (write operation), CB - 100-pF maximum 3.4 MHz
High-speed mode (read operation), CB - 100-pF maximum 3.4 MHz
High-speed mode (write operation), CB - 400-pF maximum 1.7 MHz
High-speed mode (read operation), CB - 400-pF maximum 1.7 MHz
tBUF Bus free time between a STOP and START condition Standard mode 4.7 µs
Fast mode 1.3
tHD, tSTA Hold time (repeated) START
condition
Standard mode 4 µs
Fast mode 600 ns
High-speed mode 160 ns
tLOW LOW period of the SCL clock Standard mode 4.7 µs
Fast mode 1.3 µs
High-speed mode, CB - 100-pF maximum 160 ns
High-speed mode, CB - 400-pF maximum 320 ns
tHIGH HIGH period of the SCL clock Standard mode 4 µs
Fast mode 600 ns
High-speed mode, CB - 100-pF maximum 60 ns
High-speed mode, CB - 400-pF maximum 120 ns
tSU, tSTA Setup time for a repeated START condition Standard mode 4.7 µs
Fast mode 600 ns
High-speed mode 160 ns
tSU, tDAT Data setup time Standard mode 250 ns
Fast mode 100
High-speed mode 10
tHD, tDAT Data hold time Standard mode 0 3.45 µs
Fast mode 0 0.9 µs
High-speed mode, CB - 100-pF maximum 0 70 ns
High-speed mode, CB - 400-pF maximum 0 150 ns
tRCL Rise time of SCL signal Standard mode 20 + (0.1 × CB) 1000 ns
Fast mode 20 + (0.1 × CB) 300
High-speed mode, CB - 100-pF maximum 10 40
High-speed mode, CB - 400-pF maximum 20 80
tRCL1 Rise time of SCL signal after a repeated START condition and after an acknowledge BIT Standard mode 20 + (0.1 × CB) 1000 ns
Fast mode 20 + (0.1 × CB) 300
High-speed mode, CB - 100-pF maximum 10 80
High-speed mode, CB - 400-pF maximum 20 160
tFCL Fall time of SCL signal Standard mode 20 + (0.1 × CB) 300 ns
Fast mode 20 + (0.1 × CB) 300
High-speed mode, CB - 100-pF maximum 10 40
High-speed mode, CB - 400-pF maximum 20 80
tRDA Rise time of SDA signal Standard mode 20 + (0.1 × CB) 1000 ns
Fast mode 20 + (0.1 × CB) 300
High-speed mode, CB - 100-pF maximum 10 80
High-speed mode, CB - 400-pF maximum 20 160
tFDA Fall time of SDA signal Standard mode 20 + (0.1 × CB) 300 ns
Fast mode 20 + (0.1 × CB) 300
High-speed mode, CB - 100-pF maximum 10 80
High-speed mode, CB - 400-pF maximum 20 160
tSU, tSTO Setup time for STOP condition Standard mode 4 µs
Fast mode 600 ns
High-speed mode 160 ns
CB Capacitive load for SDA and SCL 400 pF
(1) Specified by design. Not tested in production.
TPS61325 TPS61326 fs_timing_lvs957.gif Figure 1. Serial Interface Timing for F/S-Mode
TPS61325 TPS61326 hs_timing_lvs957.gif Figure 2. Serial Interface Timing for H/S-Mode

7.7 Typical Characteristics

Table 1. Table of Graphs

GRAPH NAME FIGURE NO.
LED Power Efficiency vs Input Voltage Figure 3, Figure 4
DC Input Current vs Input Voltage Figure 5
LED Current vs LED Pin Headroom Voltage Figure 6, Figure 7, Figure 8
LED Current vs LED Current Digital Code Figure 9, Figure 10, Figure 11, Figure 12
INDLED Current vs LED Pin Headroom Voltage Figure 13
Voltage Mode Efficiency vs Output Current Figure 14, Figure 15
DC Output Voltage vs Output Current Figure 16
vs Input Voltage Figure 17
Maximum Output Current vs Input Voltage Figure 18
DC Precharge Current vs Differential Input-Output Voltage Figure 19, Figure 20
Valley Current Limit Figure 21, Figure 22
Balancing Current vs Balance Pin Voltage Figure 23
Supply Current vs Input Voltage Figure 24
Standby Current vs Ambient Temperature Figure 25
Temperature Detection Threshold Figure 26, Figure 27
TPS61325 TPS61326 tc1_lvs977.gif Figure 3. LED Power Efficiency vs Input Voltage
TPS61325 TPS61326 tc3_lvs977.gif Figure 5. DC Input Current vs Input Voltage
TPS61325 TPS61326 tc5_lvs977.gif Figure 7. LED1 and LED3 Current vs
LED1 and LED3 Pin Headroom Voltage (HC_SEL = 0)
TPS61325 TPS61326 tc7_lvs977.gif Figure 9. LED2 Current vs
LED2 Current Digital Code (HC_SEL = 0)
TPS61325 TPS61326 tc9_lvs977.gif Figure 11. LED2 Current vs
LED2 Current Digital Code (HC_SEL = 0)
TPS61325 TPS61326 indled_lvs977.gif Figure 13. INDLED Current vs
INDLED Pin Headroom Voltage
TPS61325 TPS61326 tc13_lvs977.gif Figure 15. Efficiency vs Output Current
TPS61325 TPS61326 tc15_lvs977.gif Figure 17. DC Output Voltage vs Input Voltage
TPS61325 TPS61326 dc_pre_chg_lvs977.gif Figure 19. DC Precharge Current vs
Differential Input-Output Voltage (HC_SEL = 1)
TPS61325 TPS61326 tc19_lvs977.gif Figure 21. Valley Current Limit (HC_SEL = 1)
TPS61325 TPS61326 ib_vbal_lvs977.gif Figure 23. Balancing Current vs Balance Pin Voltage
TPS61325 TPS61326 is_ta_lvs977.gif Figure 25. Standby Current vs
Ambient Temperature (HC_SEL = 1)
TPS61325 TPS61326 tc25_lvs977.gif Figure 27. Temperature Detection Threshold
TPS61325 TPS61326 tc2_lvs977.gif Figure 4. LED Power Efficiency vs Input Voltage
TPS61325 TPS61326 tc4_lvs977.gif Figure 6. LED2 Current vs
LED2 Pin Headroom Voltage (HC_SEL = 0)
TPS61325 TPS61326 tc6_lvs977.gif Figure 8. LED2 Current vs
LED2 Pin Headroom Voltage (HC_SEL = 1)
TPS61325 TPS61326 tc8_lvs977.gif Figure 10. LED1 and LED3 Current vs
LED1 and LED3 Current Digital Code (HC_SEL = 0)
TPS61325 TPS61326 tc10_lvs977.gif Figure 12. LED1 and LED3 Current vs
LED1 and LED3 Current Digital Code (HC_SEL = 0)
TPS61325 TPS61326 tc12_lvs977.gif Figure 14. Efficiency vs Output Current
TPS61325 TPS61326 tc14_lvs977.gif Figure 16. DC Output Voltage vs Load Current
TPS61325 TPS61326 io_vi_lvs977.gif Figure 18. Maximum Output Current vs Input Voltage
TPS61325 TPS61326 dcpc_diffio_lvs977.gif Figure 20. DC Precharge Current vs
Differential Input-Output Voltage (HC_SEL = 1)
TPS61325 TPS61326 tc20_lvs977.gif Figure 22. Valley Current Limit (HC_SEL = 1)
TPS61325 TPS61326 tc22_lvs977.gif Figure 24. Supply Current vs Input Voltage
TPS61325 TPS61326 tc24_lvs977.gif Figure 26. Temperature Detection Threshold