SCES955 September   2023 TXH0137D-Q1

ADVANCE INFORMATION  

  1.   1
  2. 1Features
  3. 2Applications
  4. 3Description
  5. 4Pin Configuration and Functions
  6. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. 6Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
    4. 6.4 Device Functional Modes
      1. 6.4.1 Resistive Load Drive
      2. 6.4.2 ON State Input Current
      3. 6.4.3 High-Drive Outputs
  8.   Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 TTL and other Logic Inputs
        2. 7.2.2.2 High-Impedance Input Drivers
        3. 7.2.2.3 Output Low Voltage
      3. 7.2.3 Application Curve
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
      3. 7.4.3 Thermal Considerations
        1. 7.4.3.1 Improving Package Thermal Performance
  9. 7Device and Documentation Support
    1. 7.1 Receiving Notification of Documentation Updates
    2. 7.2 Support Resources
    3. 7.3 Trademarks
    4. 7.4 Electrostatic Discharge Caution
    5. 7.5 Glossary
  10. 8Revision History
  11. 9Mechanical, Packaging, and Orderable Information
    1. 9.1 Packaging Option Addendum
    2. 9.2 Tape and Reel Information
    3. 9.3 Mechanical Data

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PW|14
Thermal pad, mechanical data (Package|Pins)

Overview

The TXH0137D-Q1 is a 7-bit device that can be used in fixed directional level-translation applications for interfacing devices or systems operating at a wide voltage range as low as 1.5 V and as high as 30 V with currents up to 100 mA per channel. The A ports are designed as inputs and the Y ports are designed as outputs. The device can operate with A(X) = Y(X).

The device enables a wide range of applications with higher input or output capabilities, but more importantly it allows flexible pull-up sizing for voltage translation. Lower value resistors will enable higher frequency operation up to 1 MHz.