SLUSBW8 September   2014 TPS53632

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics (2-Phase Operation)
    9. 6.9 Typical Characteristics (3-Phase Operation)
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Current Sensing
      2. 7.3.2  Load Transients
      3. 7.3.3  AutoBalance Current Sharing
      4. 7.3.4  PWM and SKIP Signals
      5. 7.3.5  5-V, 3.3-V and 1.8-V Undervoltage Lockout (UVLO)
      6. 7.3.6  Output Undervoltage Protection (UVP)
      7. 7.3.7  Overcurrent Protection (OCP)
      8. 7.3.8  Overvoltage Protection
      9. 7.3.9  Analog Current Monitor, IMON and Corresponding Digital Output Current
      10. 7.3.10 Addressing
      11. 7.3.11 I2C Interface Operation
        1. 7.3.11.1 Key for Protocol Examples
        2. 7.3.11.2 Protocol Examples
      12. 7.3.12 Start-Up Sequence
      13. 7.3.13 Phase Add and Drop Operation
      14. 7.3.14 Power Good Operation
      15. 7.3.15 Input Voltage Limits
      16. 7.3.16 Fault Behavior
    4. 7.4 Device Functional Modes
      1. 7.4.1 PWM Operation
    5. 7.5 Configuration and Programming
      1. 7.5.1 Operating Frequency
      2. 7.5.2 Overcurrent Protection (OCP) Level
      3. 7.5.3 IMON Gain
      4. 7.5.4 Slew Rate
      5. 7.5.5 Base Address
      6. 7.5.6 Ramp Selection
      7. 7.5.7 Active Phases
    6. 7.6 Register Maps
      1. 7.6.1 Voltage Select Register (VSR) (00h)
      2. 7.6.2 IMON Register (03h)
      3. 7.6.3 VMAX Register (04h)
      4. 7.6.4 Power State Register (06h)
      5. 7.6.5 SLEW Register (07h)
      6. 7.6.6 Lot Code Registers (10-13h)
      7. 7.6.7 Fault Register (14h)
  8. Applications and Implementation
    1. 8.1 Application Information
      1. 8.1.1 3-Phase D-CAP+™, Step-Down Application
        1. 8.1.1.1 Design Requirements
        2. 8.1.1.2 Detailed Design Procedure
          1. 8.1.1.2.1 Step 1: Select Switching Frequency
          2. 8.1.1.2.2 Step 2: Set The Slew Rate
          3. 8.1.1.2.3 Step 3: Determine Inductor Value And Choose Inductor
          4. 8.1.1.2.4 Step 4: Determine Current Sensing Method
          5. 8.1.1.2.5 Step 5: DCR Current Sensing
          6. 8.1.1.2.6 Step 6: Select OCP Level
          7. 8.1.1.2.7 Step 7: Set the Load-Line Slope
          8. 8.1.1.2.8 Step 8: Current Monitor (IMON) Setting
        3. 8.1.1.3 Application Performance Plots
        4. 8.1.1.4 Loop Compensation for Zero Load-Line
  9. Power Supply Recommendations
  10. 10 Layout
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Input voltage PWM3, PWM2, PWM1, SKIP, V5A –0.3 6.0 V
VIN –0.3 30.0
COMP, CSP1, CSP2, CSP3, CSN1, CSN2, CSN3, DROOP, EN, FREQ-P, IMON, OCP-I, O-USR, RAMP, SCL, SDA, SLEWA, VDD, VFB, VINTF, VREF –0.3 3.6
GFB –0.2 0.2
Output voltage PGOOD –0.3 3.6 V
Operating junction temperature, TJ –40 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature –55 150 °C
V(ESD)(1) Human body model (HBM) ESD stress voltage(1) –2 2 kV
Charged device model (CDM) ESD stress voltage(2) –750 750 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VI Input voltage CSN1, CSN2, CSN3, CSP1, CSP2, CSP3, IMON, , OCP-I, O-USR, RAMP, SCL, SDA, VDD, VFB, VINTF, VREF –0.1 3.5 V
VIN –0.1 28
COMP, DROOP, EN, FREQ-P, PWM3, PWM2, PWM1, SKIP, SLEWA, V5A –0.1 5.5
GFB –0.1 0.1
VO Output voltage PGOOD –0.1 3.5 V
TA Operating ambient temperature –10 105 °C

6.4 Thermal Information

THERMAL METRIC(1) TPS53632 UNITS
RSM (VQFN)
32 PINS
θJA Junction-to-ambient thermal resistance(2) 37.2 °C/W
θJCtop Junction-to-case (top) thermal resistance(3) 31.9
θJB Junction-to-board thermal resistance(4) 8.1
ψJT Junction-to-top characterization parameter(5) 0.4
ψJB Junction-to-board characterization parameter(6) 7.9
θJCbot Junction-to-case (bottom) thermal resistance(7) 2.2
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

6.5 Electrical Characteristics

over recommended free-air temperature range, 4.5 V ≤ VV5A ≤ 5.5 V, 3.0 V ≤ VVDD ≤ 3.6 V, VGFB = GND, VVFB = VCORE (unless otherwise noted).
PARAMETER CONDITIONS MIN TYP MAX UNIT
POWER SUPPLY: CURRENTS, UVLO AND POWER-ON-RESET
IV5-3P V5A supply current 3-phase operation, VDAC < VVFB < (VDAC + 100 mV), EN = ‘HI’ 3.6 6.0 mA
IVDD-3P VDD supply current 3-phase operation, VDAC < VVFB < (VDAC + 100 mV), EN = ‘HI’, digital buses idle 0.2 0.8
IV5-1P V5A supply current 1-phase operation, VDAC < VVFB < (VDAC + 100 mV) , EN = ‘HI’ 3.5 6.0
IVDD-1P VDD supply current 1-phase operation, VDAC < VVFB < (VDAC + 100 mV), EN = ‘HI’, digital buses idle 0.2 0.8
IV5STBY V5A standby current EN = ‘LO’ 125 200 µA
IVDDSTBY VDD standby current EN = ‘LO’ 23 40
IVDD-1P8 VINTF supply current All conditions, digital buses idle 1.7 5.0
VUVLOH V5A UVLO ‘OK’ threshold VVFB < 200 mV, Ramp up, VVDD > 3 V, EN = ’HI’, switching begins. 4.2 4.4 4.52 V
VUVLOL V5A UVLO fault threshold Ramp down, EN = ’HI’, VVDD > 3 V, VVFB = 100 mV, restart if 5-V falls below VPOR then rises > VUVLOH, or EN is toggled w/ VV5A > VUVLOH 4.00 4.2 4.35
VPOR V5A fault latch reset threshold Ramp down, EN = ‘HI’, VVDD > 3 V. Can restart if 5-V rises to VUVLOH and no other faults present. 1.2 1.9 2.5
V3UVLOH VDD UVLO ‘OK’ threshold VVFB < 200 mV. Ramp up, VV5A > 4.5 V, EN = ’HI’, Switching begins. 2.5 2.8 3.0
V3UVLOL Fault threshold Ramp down, EN = ’HI’, V5A > 4.5V, VFB = 100 mV, restart if 5-V dips below VPOR then rises > VUVLOH or EN is toggled with 5 V > VUVLOH 2.4 2.6 2.8
VPOR VDD fault latch Ramp down, EN = ‘HI’, VV5A > 4.5 V, can restart if 5-V supply rises to VUVLOH and no other faults present. 1.2 1.9 2.5
VINTFUVLOH VINTF UVLO OK Ramp up, EN = ’HI’, VV5A > 4.5 V, VVFB = 100 mV 1.4 1.5 1.6
VINTFUVLOL VINTF UVLO falling Ramp down, EN = ’HI’, VV5A > 4.5 V, VVFB = 100 mV 1.3 1.4 1.5
REFERENCES: DAC, VREF, VFB DISCHARGE
VVIDSTP VID step size Change VID0 HI to LO to HI 10 mV
VDAC1 VFB tolerance No load active, 1.36 V ≤ VVFB ≤ 1.52 V, IOUT = 0 A –9 9
VDAC2 VFB tolerance No load medium, 1.0 V ≤ VVFB ≤ 1.35 V, IOUT = 0 A –8 8
No load medium, 0.5 V ≤ VVFB ≤ 0.99 V, IOUT = 0 A -7 7
VVREF VREF output VREF output 4.5 V ≤ VV5A ≤ 5.5 V, IVREF = 0 A 1.66 1.700 1.74 V
VVREFSRC VREF output source 0 A ≤ IREF ≤ 500 µA, HP-2 –4 -3 mV
VVREFSNK VREF output sink –500 A ≤ IREF ≤ 0 A, HP-2 3 4
VVBOOT Internal VFB initial boot voltage Initial DAC boot voltage 0.99 1.00 1.01 V
RAMP SETTINGS
VRAMP Compensation ramp RRAMP = 30 kΩ 60 mV
RRAMP = 56 kΩ 120
RRAMP = 100 kΩ 160
RRAMP ≥ 150 kΩ 40
VOLTAGE SENSE: VFB AND GFB
RVFB VFB/GFB Input resistance Not in fault, disable or UVLO, VVFB = VDAC = 1.5 V,
VGFB = 0 V, measure from VFB to GFB
1
VDELGND GFB Differential GND to GFB ±100 mV
CURRENT MONITOR
VALADC IMON ADC output ∑∆CS = 0 mV, AIMON = 3.867 00h
∑∆CS = 1.5 mV, AIMON = 3.867 19h
∑∆CS = 7.5 mV, AIMON = 3.867 80h
∑∆CS = 15 mV, AIMON = 3.867 FFh
LRIMON IMON linear range Each phase, CSPx – CSNx 50 mV
CURRENT SENSE: OVER CURRENT PROTECTION, PHASE ADD AND DROP, AND PHASE BALANCE
VOCPP OCP voltage (valley current limit) ROCP-I = 20 kΩ 3.7 7.6 11.4 mV
ROCP-I = 24 kΩ 6.6 10.5 14.1
ROCP-I = 30 kΩ 10.6 14.5 18.0
ROCP-I = 39 kΩ 15.4 19.5 23.0
ROCP-I = 56 kΩ 21.3 25.4 29.0
ROCP-I = 75 kΩ 28.4 32.5 36.2
ROCP-I = 100 kΩ 36.3 40.5 44.0
ROCP-I = 150 kΩ 45.0 49.3 53.0
IAD23 Phase add Valley current, % of OCP value, mode changes from 2-phase CCM to 3-phase CCM 25%
IAD12 Phase add Valley current, % of OCP value, mode changes from 1-phase DCM to 2-phase CCM 10%
IAD32 Phase drop Valley current, % of OCP value, mode changes from 3-phase CCM to 2-phase CCM 15%
IAD21 Phase drop Valley current, % of OCP value, mode changes from 2-phase CCM to 1-phase DCM 7%
ICS CS pin input bias current CSPx and CSNx –500 0.2 500 nA
AV-EA Error amplifier total voltage gain(1) VFB to DROOP 80 dB
IEA_SR Error amplifier source current IDROOP, VVFB = VDAC + 50 mV, RCOMP = 1 kΩ 1 mA
IEA_SK Error amplifier sink current IDROOP, VVFB = VDAC – 50mV, RCOMP = 1 kΩ –1
ACSINT Internal current sense gain Gain from CSPx – CSNx to PWM comparator, RSKIP = Open 5.8 6.0 6.2 V/V
RSFTSTP Soft-stop transistor resistance Connected to CSN1 100 200 Ω
VDP_OFF Voltage to disable dynamic phase add/drop Voltage at FREQ-P at start-up 0.70 V
VDP_ON Voltage to enable dynamic phase add/drop Voltage at FREQ-P at start-up 0.40
VDP_HYS Hysteresis voltage of phase add/drop circuit Voltage at FREQ-P at start-up 80 mV
RVIN VIN resistance EN = HI 350 600
EN = LOW or STBY 10
PROTECTION: OVP, UVP, PGOOD AND THERMAL SHUTDOWN
VOVPH Fixed OVP voltage VCSN1 > VOVPH for 1 µs 1.60 1.70 1.80 V
VPGDH PGOOD high threshold Measured at the VFB pin w/r/t VID code, device latches OFF 190 245 mV
VPGDL PGOOD low threshold Measured at the VFB pin w/r/t VID code, device latches OFF -348 -280
PWM AND SKIP OUTPUTS: I/O VOLTAGE AND CURRENT
VP-S_L PWMx/SKIP - Low PWMILOAD = ± 1 mA, SKIPILOAD = ± 100 µA 0.15 0.3 V
VP-S_H PWMx/SKIP - High PWMILOAD = ± 1 mA, SKIPILOAD = ± 100 µA 4.2
VPW-SKLK PWMx tri-state PWMILOAD = ± 100 µA 1.6 1.7 1.8
LOGIC INTERFACE: VOLTAGE AND CURRENT
RVRTTL Pull-down resistance VSDA = 0.31 4 15 Ω
RVRPG VPGOOD= 0.31 36 50
IVRTTLK Logic leakage current VSCL= 1.8 V, VSDA = 1.8 V, VPGOOD = 3.3 V -2 0.2 2 µA
VIL Low-level Input voltage SCL, SDA; VVINTF = 1.8 V 0.6 V
VIH High-level Input voltage 1.2
IENH I/O leakage, EN Leakage current , VEN = 1.8 V 24 40 µA
(1) Specified by design. Not propduction tested.

6.6 Timing Requirements

The TPS53632 requires the ENABLE signal on Pin 8 to go from low to high only after the V5A (5V), the VDD (3.3V) and the VIN rails have gone high.

6.7 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tOFF(min) Controller minimum OFF time Fixed value 20 ns
tON(min) Controller minimum ON time RCF = 150 kΩ, VVIN = 20 V, VVFB = 0 V 20
TIMERS: SLEW RATE, ADDR, SLEEP EXIT, ON TIME AND I/O TIMING
tSTART-CB Cold boot time(1) VBOOT > 0V , EN = high, CREF = 0.33 µF 1.2 ms
tSTBY-E Standby exit time(3) VVID = 1.28 V, RSLEW = 39 kΩ 250 µs
SLSET Slew rate setting for VID change RSLEW = 20 kΩ 6 mV/µs
RSLEW = 24 kΩ 12
RSLEW = 30 kΩ 18
RSLEW = 39 kΩ 24
RSLEW = 56 kΩ 30
SLSTART(2) Slew rate setting for start-up EN goes high, RSLEW = 39 kΩ 12 mV/µs
ADDR Address setting 3 LSB of I2C address VSLEWA ≤ 0.30 V (Addr = 100 0xxx) 000b
0.75 V ≤ VSLEWA ≤ 0.85 V 011b
1.15 V ≤ VSLEWA ≤ 1.25 V 101b
tPGDDGLTO PGOOD deglitch time (over)(4) 1 µs
tPGDDGLTU PGOOD deglitch time (under)(5) 31
tON On time RCF = 20 kΩ 295 ns
RCF = 24 kΩ, VVIN = 12 V, VVFB = 1 V (400 kHz) 230
RCF = 39 kΩ, VVIN = 12 V, VVFB = 1 V (600 kHz) 164
RCF = 75 kΩ, VVIN = 12 V, VVFB = 1 V (800 kHz) 140
RCF = 150 kΩ, VVIN = 12 V, VVFB = 1 V (1 MHz) 128
PWM AND SKIP OUTPUTS
tP-S_H-L(2) PWMx/SKIP H-L transition time 10% to 90%, both edges 7 20 ns
tP-S_TRI(2) PWMx tri-state transition 10% or 90% to tri-state level, both edges 5 20
PROTECTION: OVP, UVP, PGOOD AND THERMAL SHUTDOWN
tPG2 PGOOD low after enable goes low Low state time after EN goes low. 225 250 275 µs
(1) Cold boot time is defined as the time from UVLO detection to VOUT ramp.
(2) Specified by design. Not production tested.
(3) Standby exit time is defined as the time from EN assertion until PGOOD goes high
(4) PGOOD deglitch time (over) is defined as the time from when the VFB pin rises above the 250-mV VDAC boundary to when the PGOOD pin goes low.
(5) PGOOD deglitch time (under) is defined as the time from when the VFB pin falls below the –300-mV VDAC boundary to when the PGOOD pin goes low.

6.8 Typical Characteristics (2-Phase Operation)

1-startup_2ph_slusbw8.png
VIN = 12 V VOUT = 1 V Load = 1 A
Figure 1. Startup
3-load_transient_2ph_slusbw8.png
VIN = 12 V VOUT = 1 V Load = 4 A to 20 A
Figure 3. Load Transient
5-auto_ph_add_2ph_slusbw8.png
VIN = 12 V VOUT = 1 V Load = 1 A to 25 A
Figure 5. Auto Phase Add
2-switch_waveform_2ph_slusbw8.png
VIN = 12 V VOUT = 1 V Load = 10 A
Figure 2. Switching Waveform
4-vout_change_i2c_2ph_slusbw8.png
Δ VOUT, 1.0 V to 1.1 V I2C command
Figure 4. Output Voltage Change
6-auto_ph_drop_2ph_slusbw8.png
VIN = 12 V VOUT = 1 V Load = 25 A to 1 A
Figure 6. Auto Phase Drop

6.9 Typical Characteristics (3-Phase Operation)

7-startup_3ph_slusbw8.png
VIN = 12 V VOUT = 1 V Load = 1 A
Figure 7. Startup
9-load_transient_3ph_slusbw8.png
VIN = 12 V VOUT = 1 V Load = 9 A to 35 A
Figure 9. Load Transient
11-auto_ph_add_3ph_slusbw8.png
VIN = 12 V VOUT = 1 V Load = 1 A to 31 A
Figure 11. Auto Phase Add
8-switch_waveform_3ph_slusbw8.png
VIN = 12 V VOUT = 1 V Load = 30 A
Figure 8. Switching Waveform
10-vout_change_i2c_3ph_slusbw8.png
Δ VOUT, 1.0 V to 1.1 V I2C command
Figure 10. Output Voltage Change
12-auto_ph_drop_3ph_slusbw8.png
VIN = 12 V VOUT = 1 V Load = 31 A to 1 A
Figure 12. Auto Phase Drop