JAJU919 December   2023

 

  1.   1
  2.   概要
  3.   リソース
  4.   特長
  5.   アプリケーション
  6.   6
  7. 1システムの説明
    1. 1.1 用語
    2. 1.2 主なシステム仕様
  8. 2システム概要
    1. 2.1 ブロック図
    2. 2.2 設計上の考慮事項
    3. 2.3 主な使用製品
      1. 2.3.1 TMS320F2800137
      2. 2.3.2 MSPM0G1507
      3. 2.3.3 TMP6131
      4. 2.3.4 UCC28881
      5. 2.3.5 TPS54202
      6. 2.3.6 TLV9062
      7. 2.3.7 TLV74033
    4. 2.4 システム設計理論
      1. 2.4.1 ハードウェア設計
        1. 2.4.1.1 モジュール形式の設計
        2. 2.4.1.2 高電圧降圧補助電源
        3. 2.4.1.3 DC リンク電圧検出
        4. 2.4.1.4 モーター相電圧のセンシング
        5. 2.4.1.5 モーター相電流のセンシング
        6. 2.4.1.6 外部過電流保護
        7. 2.4.1.7 TMS320F2800F137 の内部過電流保護
      2. 2.4.2 3 相 PMSM 駆動
        1. 2.4.2.1 PM 同期モーターのフィールド オリエンテッド コントロール
          1. 2.4.2.1.1 空間ベクトルの定義と投影
            1. 2.4.2.1.1.1 ( a 、   b ) ⇒ ( α 、 β ) クラーク変換
            2. 2.4.2.1.1.2 α 、 β ⇒ ( d 、   q ) パーク変換
          2. 2.4.2.1.2 AC モーターの FOC 基本方式
          3. 2.4.2.1.3 回転子フラックスの位置
        2. 2.4.2.2 PM 同期モーターのセンサレス制御
          1. 2.4.2.2.1 位相ロック ループを備えた拡張スライディング モード オブザーバ
            1. 2.4.2.2.1.1 IPMSM の数学モデルと FOC 構造
            2. 2.4.2.2.1.2 IPMSM 向け ESMO の設計
            3. 2.4.2.2.1.3 PLL による回転子位置および速度の推定
        3. 2.4.2.3 弱め界磁 (FW) および最大トルク / 電流 (MTPA) 制御
        4. 2.4.2.4 モーター駆動のハードウェア要件
          1. 2.4.2.4.1 モーター電流帰還
            1. 2.4.2.4.1.1 3 つのシャント電流センシング
            2. 2.4.2.4.1.2 1 つのシャント電流センシング
          2. 2.4.2.4.2 モーター電圧帰還
  9. 3ハードウェア、ソフトウェア、テスト要件、テスト結果
    1. 3.1 ハードウェアの概要
      1. 3.1.1 ハードウェア ボードの概要
      2. 3.1.2 テスト条件
      3. 3.1.3 ボードの検証に必要なテスト機器
    2. 3.2 GUI の概要
      1. 3.2.1 テスト設定
      2. 3.2.2 GUI ソフトウェアの概要
      3. 3.2.3 シリアル ポートの設定
      4. 3.2.4 モーターの識別
      5. 3.2.5 モーターの回転
      6. 3.2.6 モーターのフォルト ステータス
      7. 3.2.7 制御パラメータの調整
      8. 3.2.8 仮想オシロスコープ
    3. 3.3 C2000 ファームウェアの概要
      1. 3.3.1 ボード テストに必要なソフトウェアのダウンロードとインストール
      2. 3.3.2 CCS でのプロジェクトの開始
      3. 3.3.3 プロジェクト構造
      4. 3.3.4 テスト方法
        1. 3.3.4.1 ビルド レベル 1:CPU とボードの構成
          1. 3.3.4.1.1 CCS を起動し、プロジェクトを開く
          2. 3.3.4.1.2 プロジェクトのビルドとロード
          3. 3.3.4.1.3 デバッグ環境設定ウィンドウ
          4. 3.3.4.1.4 コードの実行
        2. 3.3.4.2 ビルド レベル 2:ADC 帰還を使用した開ループ チェック
          1. 3.3.4.2.1 CCS を起動し、プロジェクトを開く
          2. 3.3.4.2.2 プロジェクトのビルドとロード
          3. 3.3.4.2.3 デバッグ環境設定ウィンドウ
          4. 3.3.4.2.4 コードの実行
        3. 3.3.4.3 ビルド レベル 3:閉電流ループ チェック
          1. 3.3.4.3.1 CCS を起動し、プロジェクトを開く
          2. 3.3.4.3.2 プロジェクトのビルドとロード
          3. 3.3.4.3.3 デバッグ環境設定ウィンドウ
          4. 3.3.4.3.4 コードの実行
        4. 3.3.4.4 ビルド レベル 4:完全なモーター駆動制御
          1. 3.3.4.4.1 CCS を起動し、プロジェクトを開く
          2. 3.3.4.4.2 プロジェクトのビルドとロード
          3. 3.3.4.4.3 デバッグ環境設定ウィンドウ
          4. 3.3.4.4.4 コードの実行
          5. 3.3.4.4.5 モーター駆動 FOC パラメータの調整
          6. 3.3.4.4.6 弱め界磁および MTPA 制御パラメータの調整
          7. 3.3.4.4.7 電流センシング回路の調整
    4. 3.4 テスト結果
      1. 3.4.1 負荷および熱のテスト
      2. 3.4.2 外部コンパレータによる過電流保護
      3. 3.4.3 内部 CMPSS による過電流保護
    5. 3.5 新しいハードウェア ボードへのファームウェアの移行
      1. 3.5.1 PWM、CMPSS、ADC モジュールの構成
      2. 3.5.2 ハードウェア ボード パラメータの設定
      3. 3.5.3 フォルト保護パラメータの構成
      4. 3.5.4 モーターの電気的パラメータの設定
    6. 3.6 MSPM0 ファームウェアの概要
  10. 4設計とドキュメントのサポート
    1. 4.1 デザイン ファイル
      1. 4.1.1 回路図
      2. 4.1.2 部品表 (BOM)
      3. 4.1.3 PCB レイアウトに関する推奨事項
      4. 4.1.4 Altium プロジェクト
      5. 4.1.5 ガーバー ファイル
    2. 4.2 ソフトウェア ファイル
    3. 4.3 ドキュメントのサポート
    4. 4.4 サポート・リソース
    5. 4.5 商標
  11. 5著者について
AC モーターの FOC 基本方式

図 2-12 に、FOC によるトルク制御の基本方式をまとめます。

GUID-20210326-CA0I-5DM4-JKV2-4NZVTG6DD6N8-low.svg図 2-12 AC モーターの FOC 基本方式

2 つのモーター相電流が測定されて、測定値がクラーク変換モジュールに供給されます。この投影の出力は i と i となります。この電流の 2 つの成分は、d、q 回転リファレンス フレームでの電流をもたらすパーク変換の入力です。isd と isq 成分は、リファレンス isdref (フラックス リファレンス成分) と isqref (トルク リファレンス成分) と比較されます。ここで、この制御構造に興味深い利点があることがわかります。つまり、フラックス リファレンスを変更して、回転子フラックスの位置を取得するだけで、同期機と誘導機のどちらを制御するにもこの構造を使用できるということです。永久磁石同期モーターの場合、回転子フラックスは磁石によって固定されているため、フラックスの生成は必要ありません。したがって、PMSM を制御する場合は isdref をゼロに設定します。AC 誘導モーターは動作するために回転子フラックスを生成する必要があるため、フラックス リファレンスはゼロであってはなりません。これにより、従来の制御構造の大きな欠点の 1 つである、非同期ドライブから同期ドライブへの移行が簡単に解決されます。 速度 FOC が使用されている場合、トルク指令 isqref を速度レギュレータの出力とすることができます。電流レギュレータの出力は Vsdref と Vsqref であり、逆パーク変換に適用されます。この投影の出力は、(α、β) 固定直交リファレンス フレームにおける固定子ベクトル電圧の成分である Vsαref と Vsβref であり、空間ベクトル PWM の入力になります。このブロックの出力はインバータを駆動する信号です。パーク変換と逆パーク変換の両方には回転子フラックスの位置が必要になることに注意してください。この回転子フラックスの位置の取得方法は、AC 機のタイプ (同期機または非同期機) によって異なります。