TIDUES0E June   2019  – April 2024 TMS320F28P550SJ , TMS320F28P559SJ-Q1

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1  UCC21710
      2. 2.2.2  UCC14141-Q1
      3. 2.2.3  AMC1311
      4. 2.2.4  AMC1302
      5. 2.2.5  OPA320
      6. 2.2.6  AMC1306M05
      7. 2.2.7  AMC1336
      8. 2.2.8  TMCS1133
      9. 2.2.9  TMS320F280039C
      10. 2.2.10 TLVM13620
      11. 2.2.11 ISOW1044
      12. 2.2.12 TPS2640
    3. 2.3 System Design Theory
      1. 2.3.1 Dual Active Bridge Analogy With Power Systems
      2. 2.3.2 Dual-Active Bridge – Switching Sequence
      3. 2.3.3 Dual-Active Bridge – Zero Voltage Switching (ZVS)
      4. 2.3.4 Dual-Active Bridge - Design Considerations
        1. 2.3.4.1 Leakage Inductor
        2. 2.3.4.2 Soft Switching Range
        3. 2.3.4.3 Effect of Inductance on Current
        4. 2.3.4.4 Phase Shift
        5. 2.3.4.5 Capacitor Selection
          1. 2.3.4.5.1 DC-Blocking Capacitors
        6. 2.3.4.6 Switching Frequency
        7. 2.3.4.7 Transformer Selection
        8. 2.3.4.8 SiC MOSFET Selection
      5. 2.3.5 Loss Analysis
        1. 2.3.5.1 SiC MOSFET and Diode Losses
        2. 2.3.5.2 Transformer Losses
        3. 2.3.5.3 Inductor Losses
        4. 2.3.5.4 Gate Driver Losses
        5. 2.3.5.5 Efficiency
        6. 2.3.5.6 Thermal Considerations
  9. 3Circuit Description
    1. 3.1 Power Stage
    2. 3.2 DC Voltage Sensing
      1. 3.2.1 Primary DC Voltage Sensing
      2. 3.2.2 Secondary DC Voltage Sensing
        1. 3.2.2.1 Secondary Side Battery Voltage Sensing
    3. 3.3 Current Sensing
    4. 3.4 Power Architecture
      1. 3.4.1 Auxiliary Power Supply
      2. 3.4.2 Gate Driver Bias Power Supply
      3. 3.4.3 Isolated Power Supply for Sense Circuits
    5. 3.5 Gate Driver Circuit
    6. 3.6 Additional Circuitry
    7. 3.7 Simulation
      1. 3.7.1 Setup
      2. 3.7.2 Running Simulations
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Required Hardware and Software
      1. 4.1.1 Hardware
      2. 4.1.2 Software
        1. 4.1.2.1 Getting Started With Software
        2. 4.1.2.2 Pin Configuration
        3. 4.1.2.3 PWM Configuration
        4. 4.1.2.4 High-Resolution Phase Shift Configuration
        5. 4.1.2.5 ADC Configuration
        6. 4.1.2.6 ISR Structure
    2. 4.2 Test Setup
    3. 4.3 PowerSUITE GUI
    4. 4.4 LABs
      1. 4.4.1 Lab 1
      2. 4.4.2 Lab 2
      3. 4.4.3 Lab 3
      4. 4.4.4 Lab 4
      5. 4.4.5 Lab 5
      6. 4.4.6 Lab 6
      7. 4.4.7 Lab 7
    5. 4.5 Test Results
      1. 4.5.1 Closed-Loop Performance
  11. 5Design Files
    1. 5.1 Schematics
    2. 5.2 Bill of Materials
    3. 5.3 Altium Project
    4. 5.4 Gerber Files
    5. 5.5 Assembly Drawings
  12. 6Related Documentation
    1. 6.1 Trademarks
  13. 7Terminology
  14. 8About the Author
  15. 9Revision History

Leakage Inductor

The primary specifications for designing a power converter system are input voltage V1, output voltage V2, and the maximum required power transfer. The power transfer relation of the dual-active bridge is given by Equation 6. The best value for N is V1,nom/V2,nom, which is 1.6 for this designs specifications.

Equation 6. P = N V 1 V 2 φ ( π - |φ| ) 2 π 2 F s L

where

  • V1 is the primary-side voltage
  • V2 is the secondary-side voltage
  • N is the primary to secondary turns ratio
  • φ is the phase shift in radians
  • Fs is the switching frequency
  • L is the leakage or coupling inductance

Equation 6 shows that the power transfer can be controlled with the phase shift φ, where the maximum power transfer occurs for φ = π / 2.

With V1 and V2 fixed, there are two variables left to design for the required output power. These are the switching frequency Fs and the leakage inductance L. With FSset to 100 kHz, L is selected as 35 µH. This allows a theoretical maximum power transfer of 22.85 kW. This leaves some headroom above the target power of 10 kW, which is required for lower output voltages.

The selection of the inductor defines the maximum current stress in the switch node of the converter.

Figure 2-15 shows the inductor current waveform. The currents at points i1 and i2 can be derived from this waveform.

Equation 7. i 1 = 0.5 × ( 2 × φ - ( 1 - d ) × π ) × I b a s e
Equation 8. i 2 = 0.5 × ( 2 × d   × φ + ( 1 - d ) × π ) × I b a s e

where

  • d is the voltage transfer ratio of the converter given in Equation 9
  • Ibase is the nominal base current of the converter given in Equation 10
Equation 9. d = N × V 2 V 1
Equation 10. I b a s e = V 1 ω L
TIDA-010054 Inductor Current
                    Waveform Figure 2-15 Inductor Current Waveform