SLIA097 March   2022 DRV5011 , DRV5011 , DRV5012 , DRV5012 , DRV5013 , DRV5013 , DRV5015 , DRV5015 , DRV5021 , DRV5021 , DRV5023 , DRV5023 , DRV5032 , DRV5032 , DRV5033 , DRV5033 , TMAG5110 , TMAG5110 , TMAG5111 , TMAG5111 , TMAG5123 , TMAG5123 , TMAG5231 , TMAG5231 , TMAG5328 , TMAG5328

 

  1.   Trademarks
  2. 1Introduction
  3. 2Flow Meter Design
    1. 2.1 Mechanical Considerations
    2. 2.2 Magnetic Considerations
      1. 2.2.1 Material
      2. 2.2.2 Geometry
      3. 2.2.3 Magnetic Deign Tools
    3. 2.3 Hall-Effect Sensor Considerations
      1. 2.3.1 Device Sensitivity
      2. 2.3.2 Unipolar Switch
      3. 2.3.3 Omnipolar Switch
      4. 2.3.4 1D Latch
      5. 2.3.5 2D Integrated Latch
      6. 2.3.6 Bandwidth
      7. 2.3.7 Package
      8. 2.3.8 Power Consumption
  4. 3Flow Meter Development
    1. 3.1 3D-Print Recommendations
    2. 3.2 Flow Meter Assembly Considerations
    3. 3.3 Flow Meter Assembly Guide
      1. 3.3.1 Shaft Installation
      2. 3.3.2 Bearing Installation
      3. 3.3.3 Magnet Installation
      4. 3.3.4 Impeller Installation
      5. 3.3.5 O-ring Installation
      6. 3.3.6 Flow Meter Top Installation
      7. 3.3.7 PCB Mounting
      8. 3.3.8 Cover Installation
  5. 4Flow Meter Evaluation
    1. 4.1 Flow Meter Testing
  6. 5Error Sources
    1. 5.1 Mechanical Error
    2. 5.2 Sampling Error
    3. 5.3 Magnetic Error
  7. 6Flow Meter PCB
    1. 6.1 PCB Schematic
    2. 6.2 PCB Layout
  8. 7Bill of Materials (BOM)
  9. 8References

3D-Print Recommendations

Print all 3D printed parts with suitable infill to offer adequate structure to the flow meter. Additionally, print all parts with support material to retain the part shape when printing overhangs. Orient all printed components with the largest surface area of the component facing the printer build plate. This orientation promotes adequate bed adhesion, as well as minimizes the support material generated. In the case of the example model, all parts were printed in ABS plastic, with 60% infill, 0.2-mm layer height, and minimal support material setting on a PolyPrinter 229.

The flow meter used for testing was designed to be created on a variety of 3D printers. Due to 3D printers having varying degrees of precision, some parts may require alteration to ensure proper fit. Most interface surfaces require filing or sanding to interlock well with other components. All plastic components are designed to be press fit together. The 3D print files can also be modified to suit specific design requirements.