SNLA224A June   2014  – January 2024 DS90UB913A-Q1 , DS90UB954-Q1 , DS90UB960-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Theory of Operation for Power Over Coax
    1. 2.1 Inductor Characteristics
    2. 2.2 Capacitor Characteristics
    3. 2.3 Ferrite Bead Characteristics
  6. 3Design Considerations
    1. 3.1 Frequency Range
    2. 3.2 Power Considerations
    3. 3.3 Inductor Size Considerations
    4. 3.4 Layout Considerations
  7. 4FPD-Link PoC Requirements
    1. 4.1 Channel Requirements
    2. 4.2 PoC Noise Requirements
      1. 4.2.1 VPoC Noise and Pulse
      2. 4.2.2 RIN+ Noise
      3. 4.2.3 Causes of PoC Noise
      4. 4.2.4 Noise Measurement Best Practices
      5. 4.2.5 Reducing Effects of PoC Noise
  8. 5TI Recommended PoC Networks
    1. 5.1 PoC Network From FPD-Link III Data Sheet
    2. 5.2 Murata Networks
      1. 5.2.1 Murata Network 1
      2. 5.2.2 Murata Network 2
      3. 5.2.3 Murata Network 3
    3. 5.3 TDK Networks
      1. 5.3.1 TDK Network 1
      2. 5.3.2 TDK Network 2
      3. 5.3.3 TDK Network 3
      4. 5.3.4 TDK Network 4
      5. 5.3.5 TDK Network 5
      6. 5.3.6 TDK Network 6
      7. 5.3.7 TDK Network 7
      8. 5.3.8 TDK Network 8
    4. 5.4 Coilcraft Networks
      1. 5.4.1 Coilcraft Network 1
      2. 5.4.2 Coilcraft Network 2
      3. 5.4.3 Coilcraft Network 3
      4. 5.4.4 Coilcraft Network 4
  9. 6Summary
  10. 7References
  11. 8Revision History

Abstract

Automotive applications continue to advance with new features such as 360-degree eye views and interior vehicle monitoring to check for driver awareness. To support these features multiple cameras must be installed around and within the vehicle, with each camera requiring additional hardware and cabling components. FPD-Link III devices can simplify automotive system designs by transmitting both video data and power over a single standard coaxial cable between the camera and serializer. This decreases weight, removes the need for separate power supplies, and minimizes cabling costs. This application note discusses the constraints involved in the power design portion of these applications as well as providing multiple Power-over-Coax (PoC) network solutions.