TIDUF26 june   2023 BQ24072 , LMR36520 , TLV62568 , TPS2116

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 24 VAC to DC Rectification
      2. 2.2.2 eFuse Protection
      3. 2.2.3 5-V Rails
        1. 2.2.3.1 LMR36520 Voltage Rail
        2. 2.2.3.2 USB Power Input
      4. 2.2.4 Power Source ORing
      5. 2.2.5 Battery Management
      6. 2.2.6 3.3-V Power Rail
      7. 2.2.7 Power Rail Current Sensing
      8. 2.2.8 Backlight LED Driver
      9. 2.2.9 BoosterPack Overview
    3. 2.3 Highlighted Products
      1. 2.3.1 LMR36520
      2. 2.3.2 TPS2116
      3. 2.3.3 TLV62568
      4. 2.3.4 INA2180
      5. 2.3.5 TPS92360
      6. 2.3.6 TPS2640
      7. 2.3.7 BQ24072
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Test Setup
    3. 3.3 Test Results
      1. 3.3.1  24-VAC Start-Up and Shutdown
      2. 3.3.2  USB Start-Up and Shutdown
      3. 3.3.3  ORing
      4. 3.3.4  LMR36520
      5. 3.3.5  TLV62568 Transient Response
      6. 3.3.6  BM24072 Transient Response
      7. 3.3.7  TLV62568 (3V3 Power Rail)
      8. 3.3.8  LMR36520 (LMOut Power Rail)
      9. 3.3.9  BM24072 (BMOut Power Rail)
      10. 3.3.10 Reference
        1. 3.3.10.1 TLV62568
        2. 3.3.10.2 LMR36520
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author

BoosterPack Overview

This reference design also integrates BoosterPack™ headers which offer several advantages to designers. By mounting an MCU LaunchPad to the TIDA-010932 board, several important device outputs can be monitored by the host MCU, and in the case of a wireless MCU, can also relay this data to a gateway device.

Pins 6 and 8 on J7 in Figure 2-13 are tied to the output of the INA2180, which with an MCU attached and powered via the TIDA-010932 board, can characterize a more complete system current consumption. More BoosterPack™ Plug-in Modules can be added as well to allow for a complete systems estimate for power consumption.

GUID-20230607-SS0I-TCZF-DMZR-94X9ZGXBD3XS-low.png Figure 2-13 TIDA-010932 BoosterPack Pinout