TIDUF55 November   2023

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Power Tree and Wakeup
      2. 2.2.2 Insulation Requirement for Isolated Interface
      3. 2.2.3 Robust Relay Driver
      4. 2.2.4 Stackable Daisy Chain Communication
    3. 2.3 Highlighted Products
      1. 2.3.1  TMDSCNCD263
      2. 2.3.2  LMR51440
      3. 2.3.3  TPS7A16
      4. 2.3.4  TPS7B81
      5. 2.3.5  TPS62913
      6. 2.3.6  TPS4H160-Q1
      7. 2.3.7  ULN2803C
      8. 2.3.8  ISO1042
      9. 2.3.9  UCC12050
      10. 2.3.10 ISO1410
      11. 2.3.11 SN6505B
      12. 2.3.12 BQ32002
      13. 2.3.13 HDC3020
      14. 2.3.14 TPS3823
      15. 2.3.15 DP83826E
      16. 2.3.16 TPS763
      17. 2.3.17 LM74701-Q1
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Software Requirements
    3. 3.3 Test Setup
    4. 3.4 Test Results
      1. 3.4.1 Power Supply Testing
      2. 3.4.2 Daisy Chain Signal Quality
      3. 3.4.3 Relay Driving
      4. 3.4.4 Isolated CAN Transceiver Operation
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author

TPS7A16

The TPS7A16 family of ultra-low power, low-dropout (LDO) voltage regulators offers the benefits of ultra-low quiescent current, high input voltage and miniaturized, high thermal-performance packaging.

The TPS7A16 family is designed for continuous or sporadic (power backup) battery-powered applications where ultra-low quiescent current is critical to extending system battery life.

The TPS7A16 family offers an enable pin (EN) compatible with standard CMOS logic and an integrated open drain active-high power good output (PG) with a user-programmable delay. These pins are intended for use in microcontroller-based, battery-powered applications where power-rail sequencing is required.

In addition, the TPS7A16 is an excellent choice for generating a low-voltage supply from multicell designs ranging from high cell-count power-tool packs to automotive applications; not only can this device supply a well-regulated voltage rail, but the device can also withstand and maintain regulation during voltage transients. These features translate to simpler and more cost-effective, electrical surge-protection circuitry.