TIDUF55 November   2023

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Power Tree and Wakeup
      2. 2.2.2 Insulation Requirement for Isolated Interface
      3. 2.2.3 Robust Relay Driver
      4. 2.2.4 Stackable Daisy Chain Communication
    3. 2.3 Highlighted Products
      1. 2.3.1  TMDSCNCD263
      2. 2.3.2  LMR51440
      3. 2.3.3  TPS7A16
      4. 2.3.4  TPS7B81
      5. 2.3.5  TPS62913
      6. 2.3.6  TPS4H160-Q1
      7. 2.3.7  ULN2803C
      8. 2.3.8  ISO1042
      9. 2.3.9  UCC12050
      10. 2.3.10 ISO1410
      11. 2.3.11 SN6505B
      12. 2.3.12 BQ32002
      13. 2.3.13 HDC3020
      14. 2.3.14 TPS3823
      15. 2.3.15 DP83826E
      16. 2.3.16 TPS763
      17. 2.3.17 LM74701-Q1
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Software Requirements
    3. 3.3 Test Setup
    4. 3.4 Test Results
      1. 3.4.1 Power Supply Testing
      2. 3.4.2 Daisy Chain Signal Quality
      3. 3.4.3 Relay Driving
      4. 3.4.4 Isolated CAN Transceiver Operation
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author

TPS763

The TPS763xx family of low-dropout (LDO) voltage regulators offers the benefits of LDO voltage, low-power operation, and miniaturized packaging. These regulators feature LDO voltages and quiescent currents compared to conventional LDO regulators. Offered in a 5-pin, small outline integrated-circuit SOT-23 package, the TPS763xx series devices are an excellent choice for cost-sensitive designs and for applications where board space is at a premium.

A combination of new circuit design and process innovation has enabled the usual PNP pass transistor to be replaced by a PMOS pass element. Because the PMOS pass element behaves as a low-value resistor, the dropout voltage is low [typically 300 mV at 150 mA of load current (TPS76333)] and is directly proportional to the load current. Because the PMOS pass element is a voltage-driven device, the quiescent current is low (140 µA maximum) and is stable over the entire range of output load current (0 mA to 150 mA). Intended for use in portable systems such as laptops and cellular phones, the LDO voltage feature and low-power operation result in a significant increase in system battery operating life.

The TPS763xx also features a logic-enabled sleep mode to shut down the regulator, reducing quiescent current to 1 µA maximum at TJ = 25°C. The TPS763xx is offered in 1.6-V, 1.8-V, 2.5-V, 2.7-V, 2.8-V, 3-V, 3.3-V, 3.8-V, and 5-V fixed-voltage versions and in a variable version (programmable over the range of 1.5 V to 6.5 V).