제품 상세 정보

Arm CPU 1 Arm9 Arm (max) (MHz) 456 Coprocessors C674x DSP CPU 32-bit Display type 1 LCD Protocols Ethernet Ethernet MAC 1-Port 10/100 Hardware accelerators PRUSS Operating system Linux, RTOS Security Device identity, Memory protection Rating Military Operating temperature range (°C) -40 to 105
Arm CPU 1 Arm9 Arm (max) (MHz) 456 Coprocessors C674x DSP CPU 32-bit Display type 1 LCD Protocols Ethernet Ethernet MAC 1-Port 10/100 Hardware accelerators PRUSS Operating system Linux, RTOS Security Device identity, Memory protection Rating Military Operating temperature range (°C) -40 to 105
NFBGA (GWT) 361 256 mm² 16 x 16
  • Highlights
    • Dual Core SoC
      • 375-MHz ARM926EJ-S™ RISC MPU
      • 375-MHz 674x Fixed/Floating-Point VLIW DSP
    • Enhanced Direct-Memory-Access Controller (EDMA3)
    • Serial ATA (SATA) Controller
    • DDR2/Mobile DDR Memory Controller
    • Two Multimedia Card (MMC)/Secure Digital (SD) Card Interface
    • LCD Controller
    • Video Port Interface (VPIF)
    • 10/100 Mb/s Ethernet MAC (EMAC):
    • Programmable Real-Time Unit Subsystem
    • Three Configurable UART Modules
    • USB 1.1 OHCI (Host) With Integrated PHY
    • USB 2.0 OTG Port With Integrated PHY
    • One Multichannel Audio Serial Port
    • Two Multichannel Buffered Serial Ports
  • Dual Core SoC
    • 375-MHz ARM926EJ-S™ RISC MPU
    • 375-MHz C674x VLIW DSP
  • ARM926EJ-S Core
    • 32-Bit and 16-Bit (Thumb®) Instructions
    • DSP Instruction Extensions
    • Single Cycle MAC
    • ARM® Jazelle® Technology
    • EmbeddedICE-RT™ for Real-Time Debug
  • ARM9 Memory Architecture
    • 16K-Byte Instruction Cache
    • 16K-Byte Data Cache
    • 8K-Byte RAM (Vector Table)
    • 64K-Byte ROM
  • C674x Instruction Set Features
    • Superset of the C67x+™ and C64x+™ ISAs
    • Up to C674x MIPS/MFLOPS
    • Byte-Addressable (8-/16-/32-/64-Bit Data)
    • 8-Bit Overflow Protection
    • Bit-Field Extract, Set, Clear
    • Normalization, Saturation, Bit-Counting
    • Compact 16-Bit Instructions
  • C674x Two Level Cache Memory Architecture
    • 32K-Byte L1P Program RAM/Cache
    • 32K-Byte L1D Data RAM/Cache
    • 256K-Byte L2 Unified Mapped RAM/Cache
    • Flexible RAM/Cache Partition (L1 and L2)
  • Enhanced Direct-Memory-Access Controller 3 (EDMA3):
    • 2 Channel Controllers
    • 3 Transfer Controllers
    • 64 Independent DMA Channels
    • 16 Quick DMA Channels
    • Programmable Transfer Burst Size
  • TMS320C674x Floating-Point VLIW DSP Core
    • Load-Store Architecture With Non-Aligned Support
    • 64 General-Purpose Registers (32 Bit)
    • Six ALU (32-/40-Bit) Functional Units
      • Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point
      • Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks
      • Supports up to Two Floating Point (SP or DP) Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per Cycle
    • Two Multiply Functional Units
      • Mixed-Precision IEEE Floating Point Multiply Supported up to:
        • 2 SP x SP -> SP Per Clock
        • 2 SP x SP -> DP Every Two Clocks
        • 2 SP x DP -> DP Every Three Clocks
        • 2 DP x DP -> DP Every Four Clocks
      • Fixed Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
    • Hardware Support for Modulo Loop Operation
    • Protected Mode Operation
    • Exceptions Support for Error Detection and Program Redirection
  • Software Support
    • TI DSP/BIOS™
    • Chip Support Library and DSP Library
  • 128K-Byte RAM Shared Memory
  • 1.8V or 3.3V LVCMOS IOs (except for USB and DDR2 interfaces)
  • Two External Memory Interfaces:
    • EMIFA
      • NOR (8-/16-Bit-Wide Data)
      • NAND (8-/16-Bit-Wide Data)
      • 16-Bit SDRAM With 128 MB Address Space
    • DDR2/Mobile DDR Memory Controller
      • 16-Bit DDR2 SDRAM With 512 MB Address Space or
      • 16-Bit mDDR SDRAM With 256 MB Address Space
  • Three Configurable 16550 type UART Modules:
    • With Modem Control Signals
    • 16-byte FIFO
    • 16x or 13x Oversampling Option
  • LCD Controller
  • Two Serial Peripheral Interfaces (SPI) Each With Multiple Chip-Selects
  • Two Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO) Interfaces
  • Two Master/Slave Inter-Integrated Circuit (I2C Bus™)
  • One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address/Data Bus For High Bandwidth
  • Programmable Real-Time Unit Subsystem (PRUSS)
    • Two Independent Programmable Realtime Unit (PRU) Cores
      • 32-Bit Load/Store RISC architecture
      • 4K Byte instruction RAM per core
      • 512 Bytes data RAM per core
      • PRU Subsystem (PRUSS) can be disabled via software to save power
      • Register 30 of each PRU is exported from the subsystem in addition to the normal R31 output of the PRU cores.
    • Standard power management mechanism
      • Clock gating
      • Entire subsystem under a single PSC clock gating domain
    • Dedicated interrupt controller
    • Dedicated switched central resource
  • USB 1.1 OHCI (Host) With Integrated PHY (USB1)
  • USB 2.0 OTG Port With Integrated PHY (USB0)
    • USB 2.0 High-/Full-Speed Client
    • USB 2.0 High-/Full-/Low-Speed Host
    • End Point 0 (Control)
    • End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) Rx and Tx
  • One Multichannel Audio Serial Port:
    • Two Clock Zones and 16 Serial Data Pins
    • Supports TDM, I2S, and Similar Formats
    • DIT-Capable
    • FIFO buffers for Transmit and Receive
  • Two Multichannel Buffered Serial Ports:
    • Supports TDM, I2S, and Similar Formats
    • AC97 Audio Codec Interface
    • Telecom Interfaces (ST-Bus, H100)
    • 128-channel TDM
    • FIFO buffers for Transmit and Receive
  • 10/100 Mb/s Ethernet MAC (EMAC):
    • IEEE 802.3 Compliant
    • MII Media Independent Interface
    • RMII Reduced Media Independent Interface
    • Management Data I/O (MDIO) Module
  • Video Port Interface (VPIF):
    • Two 8-bit SD (BT.656), Single 16-bit or Single Raw (8-/10-/12-bit) Video Capture Channels
    • Two 8-bit SD (BT.656), Single 16-bit Video Display Channels
  • Universal Parallel Port (uPP):
    • High-Speed Parallel Interface to FPGAs and Data Converters
    • Data Width on Each of Two Channels is 8- to 16-bit Inclusive
    • Single Data Rate or Dual Data Rate Transfers
    • Supports Multiple Interfaces with START, ENABLE and WAIT Controls
  • Serial ATA (SATA) Controller:
    • Supports SATA I (1.5 Gbps) and SATA II (3.0 Gbps)
    • Supports all SATA Power Management Features
    • Hardware-Assisted Native Command Queueing (NCQ) for up to 32 Entries
    • Supports Port Multiplier and Command-Based Switching
  • Real-Time Clock With 32 KHz Oscillator and Separate Power Rail
  • Three 64-Bit General-Purpose Timers (Each configurable as Two 32-Bit Timers)
  • One 64-bit General-Purpose/Watchdog Timer (Configurable as Two 32-bit General-Purpose Timers)
  • Two Enhanced Pulse Width Modulators (eHRPWM):
    • Dedicated 16-Bit Time-Base Counter With Period And Frequency Control
    • 6 Single Edge, 6 Dual Edge Symmetric or 3 Dual Edge Asymmetric Outputs
    • Dead-Band Generation
    • PWM Chopping by High-Frequency Carrier
    • Trip Zone Input
  • Three 32-Bit Enhanced Capture Modules (eCAP):
    • Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) outputs
    • Single Shot Capture of up to Four Event Time-Stamps
  • 361-Ball Plastic Ball Grid Array (PBGA) [GWT Suffix], 0.80-mm Ball Pitch
  • Commercial, Extended or Industrial Temperature
  • Community Resources
    • TI E2E Community
    • TI Embedded Processors Wiki

TMS320C6000 is a trademark of Texas Instruments.

  • Highlights
    • Dual Core SoC
      • 375-MHz ARM926EJ-S™ RISC MPU
      • 375-MHz 674x Fixed/Floating-Point VLIW DSP
    • Enhanced Direct-Memory-Access Controller (EDMA3)
    • Serial ATA (SATA) Controller
    • DDR2/Mobile DDR Memory Controller
    • Two Multimedia Card (MMC)/Secure Digital (SD) Card Interface
    • LCD Controller
    • Video Port Interface (VPIF)
    • 10/100 Mb/s Ethernet MAC (EMAC):
    • Programmable Real-Time Unit Subsystem
    • Three Configurable UART Modules
    • USB 1.1 OHCI (Host) With Integrated PHY
    • USB 2.0 OTG Port With Integrated PHY
    • One Multichannel Audio Serial Port
    • Two Multichannel Buffered Serial Ports
  • Dual Core SoC
    • 375-MHz ARM926EJ-S™ RISC MPU
    • 375-MHz C674x VLIW DSP
  • ARM926EJ-S Core
    • 32-Bit and 16-Bit (Thumb®) Instructions
    • DSP Instruction Extensions
    • Single Cycle MAC
    • ARM® Jazelle® Technology
    • EmbeddedICE-RT™ for Real-Time Debug
  • ARM9 Memory Architecture
    • 16K-Byte Instruction Cache
    • 16K-Byte Data Cache
    • 8K-Byte RAM (Vector Table)
    • 64K-Byte ROM
  • C674x Instruction Set Features
    • Superset of the C67x+™ and C64x+™ ISAs
    • Up to C674x MIPS/MFLOPS
    • Byte-Addressable (8-/16-/32-/64-Bit Data)
    • 8-Bit Overflow Protection
    • Bit-Field Extract, Set, Clear
    • Normalization, Saturation, Bit-Counting
    • Compact 16-Bit Instructions
  • C674x Two Level Cache Memory Architecture
    • 32K-Byte L1P Program RAM/Cache
    • 32K-Byte L1D Data RAM/Cache
    • 256K-Byte L2 Unified Mapped RAM/Cache
    • Flexible RAM/Cache Partition (L1 and L2)
  • Enhanced Direct-Memory-Access Controller 3 (EDMA3):
    • 2 Channel Controllers
    • 3 Transfer Controllers
    • 64 Independent DMA Channels
    • 16 Quick DMA Channels
    • Programmable Transfer Burst Size
  • TMS320C674x Floating-Point VLIW DSP Core
    • Load-Store Architecture With Non-Aligned Support
    • 64 General-Purpose Registers (32 Bit)
    • Six ALU (32-/40-Bit) Functional Units
      • Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point
      • Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks
      • Supports up to Two Floating Point (SP or DP) Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per Cycle
    • Two Multiply Functional Units
      • Mixed-Precision IEEE Floating Point Multiply Supported up to:
        • 2 SP x SP -> SP Per Clock
        • 2 SP x SP -> DP Every Two Clocks
        • 2 SP x DP -> DP Every Three Clocks
        • 2 DP x DP -> DP Every Four Clocks
      • Fixed Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
    • Hardware Support for Modulo Loop Operation
    • Protected Mode Operation
    • Exceptions Support for Error Detection and Program Redirection
  • Software Support
    • TI DSP/BIOS™
    • Chip Support Library and DSP Library
  • 128K-Byte RAM Shared Memory
  • 1.8V or 3.3V LVCMOS IOs (except for USB and DDR2 interfaces)
  • Two External Memory Interfaces:
    • EMIFA
      • NOR (8-/16-Bit-Wide Data)
      • NAND (8-/16-Bit-Wide Data)
      • 16-Bit SDRAM With 128 MB Address Space
    • DDR2/Mobile DDR Memory Controller
      • 16-Bit DDR2 SDRAM With 512 MB Address Space or
      • 16-Bit mDDR SDRAM With 256 MB Address Space
  • Three Configurable 16550 type UART Modules:
    • With Modem Control Signals
    • 16-byte FIFO
    • 16x or 13x Oversampling Option
  • LCD Controller
  • Two Serial Peripheral Interfaces (SPI) Each With Multiple Chip-Selects
  • Two Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO) Interfaces
  • Two Master/Slave Inter-Integrated Circuit (I2C Bus™)
  • One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address/Data Bus For High Bandwidth
  • Programmable Real-Time Unit Subsystem (PRUSS)
    • Two Independent Programmable Realtime Unit (PRU) Cores
      • 32-Bit Load/Store RISC architecture
      • 4K Byte instruction RAM per core
      • 512 Bytes data RAM per core
      • PRU Subsystem (PRUSS) can be disabled via software to save power
      • Register 30 of each PRU is exported from the subsystem in addition to the normal R31 output of the PRU cores.
    • Standard power management mechanism
      • Clock gating
      • Entire subsystem under a single PSC clock gating domain
    • Dedicated interrupt controller
    • Dedicated switched central resource
  • USB 1.1 OHCI (Host) With Integrated PHY (USB1)
  • USB 2.0 OTG Port With Integrated PHY (USB0)
    • USB 2.0 High-/Full-Speed Client
    • USB 2.0 High-/Full-/Low-Speed Host
    • End Point 0 (Control)
    • End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) Rx and Tx
  • One Multichannel Audio Serial Port:
    • Two Clock Zones and 16 Serial Data Pins
    • Supports TDM, I2S, and Similar Formats
    • DIT-Capable
    • FIFO buffers for Transmit and Receive
  • Two Multichannel Buffered Serial Ports:
    • Supports TDM, I2S, and Similar Formats
    • AC97 Audio Codec Interface
    • Telecom Interfaces (ST-Bus, H100)
    • 128-channel TDM
    • FIFO buffers for Transmit and Receive
  • 10/100 Mb/s Ethernet MAC (EMAC):
    • IEEE 802.3 Compliant
    • MII Media Independent Interface
    • RMII Reduced Media Independent Interface
    • Management Data I/O (MDIO) Module
  • Video Port Interface (VPIF):
    • Two 8-bit SD (BT.656), Single 16-bit or Single Raw (8-/10-/12-bit) Video Capture Channels
    • Two 8-bit SD (BT.656), Single 16-bit Video Display Channels
  • Universal Parallel Port (uPP):
    • High-Speed Parallel Interface to FPGAs and Data Converters
    • Data Width on Each of Two Channels is 8- to 16-bit Inclusive
    • Single Data Rate or Dual Data Rate Transfers
    • Supports Multiple Interfaces with START, ENABLE and WAIT Controls
  • Serial ATA (SATA) Controller:
    • Supports SATA I (1.5 Gbps) and SATA II (3.0 Gbps)
    • Supports all SATA Power Management Features
    • Hardware-Assisted Native Command Queueing (NCQ) for up to 32 Entries
    • Supports Port Multiplier and Command-Based Switching
  • Real-Time Clock With 32 KHz Oscillator and Separate Power Rail
  • Three 64-Bit General-Purpose Timers (Each configurable as Two 32-Bit Timers)
  • One 64-bit General-Purpose/Watchdog Timer (Configurable as Two 32-bit General-Purpose Timers)
  • Two Enhanced Pulse Width Modulators (eHRPWM):
    • Dedicated 16-Bit Time-Base Counter With Period And Frequency Control
    • 6 Single Edge, 6 Dual Edge Symmetric or 3 Dual Edge Asymmetric Outputs
    • Dead-Band Generation
    • PWM Chopping by High-Frequency Carrier
    • Trip Zone Input
  • Three 32-Bit Enhanced Capture Modules (eCAP):
    • Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) outputs
    • Single Shot Capture of up to Four Event Time-Stamps
  • 361-Ball Plastic Ball Grid Array (PBGA) [GWT Suffix], 0.80-mm Ball Pitch
  • Commercial, Extended or Industrial Temperature
  • Community Resources
    • TI E2E Community
    • TI Embedded Processors Wiki

TMS320C6000 is a trademark of Texas Instruments.

This device is a Low-power applications processor based on an ARM926EJ-S and a C674x DSP core. It provides significantly lower power than other members of the TMS320C6000 platform of DSPs.

This device enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution.

The dual-core architecture of the device provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core.

The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.

The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM.

The device DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM shared memory is available for use by other hosts without affecting DSP performance.

The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two inter-integrated circuit (I2C) Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSP) with FIFO buffers; two SPI interfaces with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 9 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three UART interfaces (each with RTS and CTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed DDR2/Mobile DDR controller.

The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces.

The SATA controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps).

The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs or other parallel devices. The UPP supports programmable data widths between 8- to 16-bits on each of two channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE and WAIT signals to provide control for a variety of data converters.

A Video Port Interface (VPIF) is included providing a flexible video input/output port.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.

This device has a complete set of development tools for the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.

This device is a Low-power applications processor based on an ARM926EJ-S and a C674x DSP core. It provides significantly lower power than other members of the TMS320C6000 platform of DSPs.

This device enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution.

The dual-core architecture of the device provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core.

The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.

The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM.

The device DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM shared memory is available for use by other hosts without affecting DSP performance.

The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two inter-integrated circuit (I2C) Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSP) with FIFO buffers; two SPI interfaces with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 9 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three UART interfaces (each with RTS and CTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed DDR2/Mobile DDR controller.

The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces.

The SATA controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps).

The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs or other parallel devices. The UPP supports programmable data widths between 8- to 16-bits on each of two channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE and WAIT signals to provide control for a variety of data converters.

A Video Port Interface (VPIF) is included providing a flexible video input/output port.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.

This device has a complete set of development tools for the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기5
유형 직함 날짜
* Data sheet SMOMAPL138B-HIREL Low-Power Applications Processor datasheet (Rev. B) 2013/07/18
* Errata OMAP-L138 C6000 DSP+ARM Processor (Revs 2.3, 2.1, 2.0, 1.1, & 1.0) Errata (Rev. M) 2014/03/21
* Radiation & reliability report SMOMAPL138BGWTA3R Reliability Report 2012/04/09
Application note Introduction to TMS320C6000 DSP Optimization 2011/10/06
White paper Software and Hardware Design Challenges Due to Dynamic Raw NAND Market 2011/05/19

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

디버그 프로브

TMDSEMU200-U — XDS200 USB 디버그 프로브

XDS200은 TI 임베디드 디바이스 디버깅에 사용되는 디버그 프로브(에뮬레이터)입니다. XDS200은 저렴한 XDS110 및 고성능 XDS560v2에 비해 저렴한 비용으로 우수한 성능을 균형 있게 제공합니다. 단일 포드에서 광범위한 표준(IEEE1149.1, IEEE1149.7, SWD)을 지원합니다. 모든 XDS 디버그 프로브는 ETB(Embedded Trace Buffer)를 특징으로 하는 모든 Arm® 및 DSP 프로세서에서 코어 및 시스템 추적을 지원합니다. 핀을 통한 코어 추적의 경우 XDS560v2 PRO TRACE가 (...)

TI.com에서 구매할 수 없습니다
디버그 프로브

TMDSEMU560V2STM-U — XDS560v2 시스템 추적 USB 디버그 프로브

XDS560v2는 디버그 프로브의 XDS560™ 제품군 중 최고의 성능을 가진 제품으로, 기존의 JTAG 표준(IEEE1149.1)과 cJTAG(IEEE1149.7)를 모두 지원합니다. SWD(직렬 와이어 디버그)는 지원하지 않습니다.

모든 XDS 디버그 프로브는 ETB(Embedded Trace Buffer)를 특징으로 하는 모든 ARM 및 DSP 프로세서에서 코어 및 시스템 추적을 지원합니다. 핀을 통한 추적의 경우 XDS560v2 PRO TRACE가 필요합니다.

XDS560v2는 MIPI HSPT 60핀 커넥터(TI 14핀, (...)

TI.com에서 구매할 수 없습니다
디버그 프로브

TMDSEMU560V2STM-UE — XDS560v2 시스템 추적 USB 및 이더넷 디버그 프로브

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

TI.com에서 구매할 수 없습니다
드라이버 또는 라이브러리

MATHLIB — 부동 소수점 디바이스용 DSP 수학 라이브러리

The Texas Instruments math library is an optimized floating-point math function library for C programmers using TI floating point devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed is critical. By using these routines instead (...)
IDE, 구성, 컴파일러 또는 디버거

CCSTUDIO Code Composer Studio integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) for TI's microcontrollers and processors. It comprises a suite of tools used to develop and debug embedded applications.  Code Composer Studio is available for download across Windows®, Linux® and macOS® (...)

지원되는 제품 및 하드웨어

지원되는 제품 및 하드웨어

이 설계 리소스는 이러한 범주의 제품 대부분을 지원합니다.

제품 세부 정보 페이지에서 지원을 확인하십시오.

시작 다운로드 옵션
소프트웨어 코덱

C66XCODECSPCH C66x Speech Codecs - Software and Documentation

TI codecs are free, come with production licensing and are available for download now. All are production-tested for easy integration into video and voice applications. In many cases, the C64x+ codecs are provided and validated for C66x platforms. Datasheets and Release Notes are on the download (...)

지원되는 제품 및 하드웨어

지원되는 제품 및 하드웨어

제품
Arm 기반 프로세서
OMAPL137-HT 고온 저전력 C674x 부동 소수점 DSP + Arm 프로세서 - 최대 456MHz OMAPL138B-EP 향상된 제품 저전력 C674x 부동 소수점 DSP + Arm9 프로세서 - 345MHz SMOMAPL138B-HIREL 고신뢰성 제품 저전력 C674x 부동 소수점 DSP + Arm9 프로세서 - 375MHz
DSP(디지털 신호 프로세서)
DM505 비전 분석용 SoC 15mm 패키지 SM320C6678-HIREL 고신뢰성 제품 고성능 8코어 C6678 고정 및 부동 소수점 DSP
다운로드 옵션
소프트웨어 코덱

C66XCODECSVID C6678 Video Codecs - Software and Documentation

TI codecs are free, come with production licensing and are available for download now. All are production-tested for easy integration into video and voice applications. In many cases, the C64x+ codecs are provided and validated for C66x platforms. Datasheets and Release Notes are on the download (...)

지원되는 제품 및 하드웨어

지원되는 제품 및 하드웨어

제품
Arm 기반 프로세서
OMAPL137-HT 고온 저전력 C674x 부동 소수점 DSP + Arm 프로세서 - 최대 456MHz OMAPL138B-EP 향상된 제품 저전력 C674x 부동 소수점 DSP + Arm9 프로세서 - 345MHz SMOMAPL138B-HIREL 고신뢰성 제품 저전력 C674x 부동 소수점 DSP + Arm9 프로세서 - 375MHz
DSP(디지털 신호 프로세서)
DM505 비전 분석용 SoC 15mm 패키지 SM320C6678-HIREL 고신뢰성 제품 고성능 8코어 C6678 고정 및 부동 소수점 DSP
다운로드 옵션
설계 툴

PROCESSORS-3P-SEARCH — Arm 기반 MPU, arm 기반 MCU 및 DSP 타사 검색 툴

TI는 여러 회사와의 협력을 통해 TI 프로세서를 사용하여 광범위한 소프트웨어, 툴 및 SOM을 제공해서 생산 단계로 가는 속도를 높이고 있습니다. 이 검색 툴을 다운로드하여 타사 솔루션을 빠르게 검색하고 필요에 맞는 올바른 타사를 찾아보세요. 여기에 나열된 소프트웨어, 툴 및 모듈은 텍사스 인스트루먼트가 아닌 독립적인 타사에서 생산 및 관리하고 있습니다.

검색 툴은 다음과 같이 제품 유형별로 분류되어 있습니다.

  • 툴에는 IDE/컴파일러, 디버그 및 추적, 시뮬레이션 및 모델링 소프트웨어, 플래시 프로그래머가 포함되어 있습니다.
  • OS에는 (...)
패키지 다운로드
NFBGA (GWT) 361 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

권장 제품에는 본 TI 제품과 관련된 매개 변수, 평가 모듈 또는 레퍼런스 디자인이 있을 수 있습니다.

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상