제품 상세 정보

Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Number of channels 18 IOL (max) (mA) 64 IOH (max) (mA) -6 Input type TTL-Compatible CMOS Output type 3-State Features Bus-hold, Over-voltage tolerant inputs, Partial power down (Ioff), Power up 3-state, Very high speed (tpd 5-10ns) Technology family LVT Rating Catalog Operating temperature range (°C) -40 to 85
Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 3.6 Number of channels 18 IOL (max) (mA) 64 IOH (max) (mA) -6 Input type TTL-Compatible CMOS Output type 3-State Features Bus-hold, Over-voltage tolerant inputs, Partial power down (Ioff), Power up 3-state, Very high speed (tpd 5-10ns) Technology family LVT Rating Catalog Operating temperature range (°C) -40 to 85
SSOP (DL) 56 190.647 mm² 18.42 x 10.35 TSSOP (DGG) 56 113.4 mm² 14 x 8.1
  • Members of the Texas Instruments
    Widebus™ Family
  • UBT™ Transceiver Combines D-Type
    Latches and D-Type Flip-Flops for
    Operation in Transparent, Latched, or
    Clocked Mode
  • State-of-the-Art Advanced BiCMOS
    Technology (ABT) Design for 3.3-V
    Operation and Low Static-Power
    Dissipation
  • Support Mixed-Mode Signal Operation (5-V
    Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation
    Down to 2.7 V
  • Typical VOLP (Output Ground Bounce)
    <0.8 V at VCC = 3.3 V, TA = 25°C
  • Ioff and Power-Up 3-State Support Hot
    Insertion
  • Bus Hold on Data Inputs Eliminates the
    Need for External Pullup/Pulldown
    Resistors
  • Distributed VCC and GND Pins Minimize
    High-Speed Switching Noise
  • Flow-Through Architecture Optimizes PCB Layout
  • Latch-Up Performance Exceeds 500 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

Widebus and UBT are trademarks of Texas Instruments.

  • Members of the Texas Instruments
    Widebus™ Family
  • UBT™ Transceiver Combines D-Type
    Latches and D-Type Flip-Flops for
    Operation in Transparent, Latched, or
    Clocked Mode
  • State-of-the-Art Advanced BiCMOS
    Technology (ABT) Design for 3.3-V
    Operation and Low Static-Power
    Dissipation
  • Support Mixed-Mode Signal Operation (5-V
    Input and Output Voltages With 3.3-V VCC)
  • Support Unregulated Battery Operation
    Down to 2.7 V
  • Typical VOLP (Output Ground Bounce)
    <0.8 V at VCC = 3.3 V, TA = 25°C
  • Ioff and Power-Up 3-State Support Hot
    Insertion
  • Bus Hold on Data Inputs Eliminates the
    Need for External Pullup/Pulldown
    Resistors
  • Distributed VCC and GND Pins Minimize
    High-Speed Switching Noise
  • Flow-Through Architecture Optimizes PCB Layout
  • Latch-Up Performance Exceeds 500 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

Widebus and UBT are trademarks of Texas Instruments.

The ’LVTH16501 devices are 18-bit universal bus transceivers designed for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and OEBA is active low).

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

The ’LVTH16501 devices are 18-bit universal bus transceivers designed for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and OEBA is active low).

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

다운로드 스크립트와 함께 비디오 보기 동영상

관심 가지실만한 유사 제품

open-in-new 대안 비교
비교 대상 장치와 동일한 기능을 지원하는 핀 대 핀
74ACT16861 활성 3상 출력을 지원하는 20비트 버스 트랜시버 Voltage range (4.5V to 5.5V)
비교 대상 장치와 유사한 기능
SN74ACT245 활성 TTL 호환 CMOS 입력 및 3상 출력을 지원하는 옥탈 버스 트랜시버 Voltage range (4.5V to 5.5V)

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기17
유형 직함 날짜
* Data sheet SN54LVTH16501, SN74LVTH16501 datasheet (Rev. F) 2009/08/19
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 2021/07/26
Application note An Overview of Bus-Hold Circuit and the Applications (Rev. B) 2018/09/17
Selection guide Logic Guide (Rev. AB) 2017/06/12
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015/12/02
User guide LOGIC Pocket Data Book (Rev. B) 2007/01/16
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004/07/08
Application note TI IBIS File Creation, Validation, and Distribution Processes 2002/08/29
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 2002/05/22
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 2002/05/10
Selection guide Advanced Bus Interface Logic Selection Guide 2001/01/09
Application note LVT-to-LVTH Conversion 1998/12/08
Application note LVT Family Characteristics (Rev. A) 1998/03/01
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 1997/08/01
Application note Input and Output Characteristics of Digital Integrated Circuits 1996/10/01
Application note Live Insertion 1996/10/01
Application note Understanding Advanced Bus-Interface Products Design Guide 1996/05/01

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

시뮬레이션 모델

SN74LVTH16501 IBIS Model

SCEM173.ZIP (19 KB) - IBIS Model
패키지 다운로드
SSOP (DL) 56 옵션 보기
TSSOP (DGG) 56 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상