產品詳細資料

Function Memory interface Additive RMS jitter (typ) (fs) 40 Output frequency (max) (MHz) 533 Number of outputs 1 Output supply voltage (V) 3.3 Core supply voltage (V) 3.3 Output skew (ps) 0 Features Rambus XDR Operating temperature range (°C) -40 to 85 Rating Catalog Output type CMOS Input type CMOS
Function Memory interface Additive RMS jitter (typ) (fs) 40 Output frequency (max) (MHz) 533 Number of outputs 1 Output supply voltage (V) 3.3 Core supply voltage (V) 3.3 Output skew (ps) 0 Features Rambus XDR Operating temperature range (°C) -40 to 85 Rating Catalog Output type CMOS Input type CMOS
SSOP (DBQ) 24 51.9 mm² 8.65 x 6
  • 533-MHz Differential Clock Source for Direct Rambus™ Memory Systems for an 1066-MHz Data Transfer Rate
  • Fail-Safe Power Up Initialization
  • Synchronizes the Clock Domains of the Rambus Channel With an External System or Processor Clock
  • Three Power Operating Modes to Minimize Power for Mobile and Other Power-Sensitive Applications
  • Operates From a Single 3.3-V Supply and 120 mW at 300 MHz (Typ)
  • Packaged in a Shrink Small-Outline Package (DBQ)
  • Supports Frequency Multipliers: 4, 6, 8, 16/3
  • No External Components Required for PLL
  • Supports Independent Channel Clocking
  • Spread Spectrum Clocking Tracking Capability to Reduce EMI
  • Designed for Use With TI’s 133-MHz Clock Synthesizers CDC924 and CDC921
  • Cycle-Cycle Jitter Is Less Than 40 ps at 533 MHz
  • Certified by Gigatest Labs to Exceed the Rambus DRCG Validation Requirement
  • Supports Industrial Temperature Range of –40°C to 85°C

DIRECT RAMBUS, Rambus are trademarks of Rambus Inc.

  • 533-MHz Differential Clock Source for Direct Rambus™ Memory Systems for an 1066-MHz Data Transfer Rate
  • Fail-Safe Power Up Initialization
  • Synchronizes the Clock Domains of the Rambus Channel With an External System or Processor Clock
  • Three Power Operating Modes to Minimize Power for Mobile and Other Power-Sensitive Applications
  • Operates From a Single 3.3-V Supply and 120 mW at 300 MHz (Typ)
  • Packaged in a Shrink Small-Outline Package (DBQ)
  • Supports Frequency Multipliers: 4, 6, 8, 16/3
  • No External Components Required for PLL
  • Supports Independent Channel Clocking
  • Spread Spectrum Clocking Tracking Capability to Reduce EMI
  • Designed for Use With TI’s 133-MHz Clock Synthesizers CDC924 and CDC921
  • Cycle-Cycle Jitter Is Less Than 40 ps at 533 MHz
  • Certified by Gigatest Labs to Exceed the Rambus DRCG Validation Requirement
  • Supports Industrial Temperature Range of –40°C to 85°C

DIRECT RAMBUS, Rambus are trademarks of Rambus Inc.

The Direct Rambus clock generator (DRCG) provides the necessary clock signals to support a Direct Rambus memory subsystem. It includes signals to synchronize the Direct Rambus channel clock to an external system or processor clock. It is designed to support Direct Rambus memory on a desktop, workstation, server, and mobile PC motherboards. DRCG also provides an off-the-shelf solution for a broad range of Direct Rambus memory applications.

The DRCG provides clock multiplication and phase alignment for a Direct Rambus memory subsystem to enable synchronous communication between the Rambus channel and ASIC clock domains. In a Direct Rambus memory subsystem, a system clock source provides the REFCLK and PCLK clock references to the DRCG and memory controller, respectively. The DRCG multiplies REFCLK and drives a high-speed BUSCLK to RDRAMs and the memory controller. Gear ratio logic in the memory controller divides the PCLK and BUSCLK frequencies by ratios M and N such that PCLKM = SYNCLKN, where SYNCLK = BUSCLK/4. The DRCG detects the phase difference between PCLKM and SYNCLKN and adjusts the phase of BUSCLK such that the skew between PCLKM and SYNCLKN is minimized. This allows data to be transferred across the SYNCLK/PCLK boundary without incurring additional latency.

User control is provided by multiply and mode selection terminals. The multiply terminals provide selection of one of four clock frequency multiply ratios, generating BUSCLK frequencies ranging from 267 MHz to 533 MHz with clock references ranging from 33 MHz to 100 MHz. The mode select terminals can be used to select a bypass mode where the frequency multiplied reference clock is directly output to the Rambus channel for systems where synchronization between the Rambus clock and a system clock is not required. Test modes are provided to bypass the PLL and output REFCLK on the Rambus channel and to place the outputs in a high-impedance state for board testing.

The CDCFR83A has a fail-safe power up initialization state-machine which supports proper operation under all power up conditions.

The CDCFR83A is characterized for operation over free-air temperatures of –40°C to 85°C.

The Direct Rambus clock generator (DRCG) provides the necessary clock signals to support a Direct Rambus memory subsystem. It includes signals to synchronize the Direct Rambus channel clock to an external system or processor clock. It is designed to support Direct Rambus memory on a desktop, workstation, server, and mobile PC motherboards. DRCG also provides an off-the-shelf solution for a broad range of Direct Rambus memory applications.

The DRCG provides clock multiplication and phase alignment for a Direct Rambus memory subsystem to enable synchronous communication between the Rambus channel and ASIC clock domains. In a Direct Rambus memory subsystem, a system clock source provides the REFCLK and PCLK clock references to the DRCG and memory controller, respectively. The DRCG multiplies REFCLK and drives a high-speed BUSCLK to RDRAMs and the memory controller. Gear ratio logic in the memory controller divides the PCLK and BUSCLK frequencies by ratios M and N such that PCLKM = SYNCLKN, where SYNCLK = BUSCLK/4. The DRCG detects the phase difference between PCLKM and SYNCLKN and adjusts the phase of BUSCLK such that the skew between PCLKM and SYNCLKN is minimized. This allows data to be transferred across the SYNCLK/PCLK boundary without incurring additional latency.

User control is provided by multiply and mode selection terminals. The multiply terminals provide selection of one of four clock frequency multiply ratios, generating BUSCLK frequencies ranging from 267 MHz to 533 MHz with clock references ranging from 33 MHz to 100 MHz. The mode select terminals can be used to select a bypass mode where the frequency multiplied reference clock is directly output to the Rambus channel for systems where synchronization between the Rambus clock and a system clock is not required. Test modes are provided to bypass the PLL and output REFCLK on the Rambus channel and to place the outputs in a high-impedance state for board testing.

The CDCFR83A has a fail-safe power up initialization state-machine which supports proper operation under all power up conditions.

The CDCFR83A is characterized for operation over free-air temperatures of –40°C to 85°C.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 1
類型 標題 日期
* Data sheet Direct Rambus(TM) Clock Generator datasheet 2005年 8月 25日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

模擬型號

CDCFR83A IBIS Model

SCAC069.ZIP (12 KB) - IBIS Model
模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
封裝 引腳 下載
SSOP (DBQ) 24 檢視選項

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 資格摘要
  • 進行中可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片