產品詳細資料

Function Zero-delay Additive RMS jitter (typ) (fs) 120 Output frequency (max) (MHz) 180 Number of outputs 8 Output supply voltage (V) 3.3 Core supply voltage (V) 3.3 Output skew (ps) 150 Features Spread spectrum clocking (SSC) Operating temperature range (°C) -40 to 85 Rating Catalog Output type LVTTL Input type LVTTL
Function Zero-delay Additive RMS jitter (typ) (fs) 120 Output frequency (max) (MHz) 180 Number of outputs 8 Output supply voltage (V) 3.3 Core supply voltage (V) 3.3 Output skew (ps) 150 Features Spread spectrum clocking (SSC) Operating temperature range (°C) -40 to 85 Rating Catalog Output type LVTTL Input type LVTTL
TSSOP (PW) 16 32 mm² 5 x 6.4
  • Phase-Locked Loop-Based Multiplier by Four
  • Input Frequency Range: 2.5 MHz to 45 MHz
  • Output Frequency Range: 10 MHz to 180 MHz
  • LVCMOS/LVTT I/O Compatible
  • Low Jitter (Cycle-Cycle): ±120 ps Over the Range 75 MHz to 180 MHz
  • Distributes One Clock Input to Two Banks of Four Outputs
  • Auto Frequency Detection to Disable Device (Power-Down Mode)
  • Operates From Single 3.3-V Supply
  • Industrial Temperature Range –40°C to 85°C
  • 25- On-Chip Series Damping Resistors
  • No External RC Network Required
  • Spread Spectrum Clock Compatible (SSC)
  • Available in 16-Pin TSSOP Package

  • Phase-Locked Loop-Based Multiplier by Four
  • Input Frequency Range: 2.5 MHz to 45 MHz
  • Output Frequency Range: 10 MHz to 180 MHz
  • LVCMOS/LVTT I/O Compatible
  • Low Jitter (Cycle-Cycle): ±120 ps Over the Range 75 MHz to 180 MHz
  • Distributes One Clock Input to Two Banks of Four Outputs
  • Auto Frequency Detection to Disable Device (Power-Down Mode)
  • Operates From Single 3.3-V Supply
  • Industrial Temperature Range –40°C to 85°C
  • 25- On-Chip Series Damping Resistors
  • No External RC Network Required
  • Spread Spectrum Clock Compatible (SSC)
  • Available in 16-Pin TSSOP Package

The CDCVF25084 is a high-performance, low-skew, low-jitter, phase-lock loop clock multiplier. It uses a PLL to precisely align, in both frequency and phase, the output clocks to the input clock signal including a multiplication factor of four. The CDCVF25084 operates from a nominal supply voltage of 3.3 V. The device also includes integrated series-damping resistors in the output drivers that make it ideal for driving point-to-point loads.

Two banks of four outputs each provide low-skew, low-jitter copies of CLKIN x four. All outputs operate at the same frequency. Output duty cycles are adjusted to 50%, independent of duty cycle at CLKIN. The device automatically goes into power-down mode when no input signal is applied to CLKIN and the outputs go into a low state. Unlike many products containing PLLs, the CDCVF25084 does not require an external RC network. The loop filter for the PLL is included on-chip, minimizing component count, space, and cost.

Because it is based on a PLL circuitry, the CDCVF25084 requires a stabilization time to achieve phase lock of the feedback signal to the reference signal. This stabilization is required following power up and application of a fixed-frequency signal at CLKIN and any following changes to the PLL reference.

The CDCVF25084 is characterized for operation from –40°C to 85°C.

The CDCVF25084 is a high-performance, low-skew, low-jitter, phase-lock loop clock multiplier. It uses a PLL to precisely align, in both frequency and phase, the output clocks to the input clock signal including a multiplication factor of four. The CDCVF25084 operates from a nominal supply voltage of 3.3 V. The device also includes integrated series-damping resistors in the output drivers that make it ideal for driving point-to-point loads.

Two banks of four outputs each provide low-skew, low-jitter copies of CLKIN x four. All outputs operate at the same frequency. Output duty cycles are adjusted to 50%, independent of duty cycle at CLKIN. The device automatically goes into power-down mode when no input signal is applied to CLKIN and the outputs go into a low state. Unlike many products containing PLLs, the CDCVF25084 does not require an external RC network. The loop filter for the PLL is included on-chip, minimizing component count, space, and cost.

Because it is based on a PLL circuitry, the CDCVF25084 requires a stabilization time to achieve phase lock of the feedback signal to the reference signal. This stabilization is required following power up and application of a fixed-frequency signal at CLKIN and any following changes to the PLL reference.

The CDCVF25084 is characterized for operation from –40°C to 85°C.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 1
類型 標題 日期
* Data sheet CDCVF25084: 3.3V Phased-Lock Loop Clock Driver datasheet (Rev. A) 2003年 5月 12日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

模擬型號

CDCVF25084 IBIS Model

SCAC044.ZIP (12 KB) - IBIS Model
模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
封裝 引腳 下載
TSSOP (PW) 16 檢視選項

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 資格摘要
  • 進行中可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片