SN65LVDS349

現行

四路高速差動接收器

產品詳細資料

Function Receiver Protocols LVDS Number of transmitters 0 Number of receivers 4 Supply voltage (V) 3.3 Signaling rate (MBits) 560 Input signal CMOS, ECL, LVCMOS, LVDS, LVECL, LVPECL, PECL Output signal LVTTL Rating Catalog Operating temperature range (°C) -40 to 85
Function Receiver Protocols LVDS Number of transmitters 0 Number of receivers 4 Supply voltage (V) 3.3 Signaling rate (MBits) 560 Input signal CMOS, ECL, LVCMOS, LVDS, LVECL, LVPECL, PECL Output signal LVTTL Rating Catalog Operating temperature range (°C) -40 to 85
TSSOP (PW) 16 32 mm² 5 x 6.4
  • Meets or Exceeds the Requirements of ANSI
    TIA/EIA-644A Standard
  • Single-Channel Signaling Rates up to
    560 Mbps
  • –4 V to 5 V Common-Mode Input Voltage
    Range
  • Flow-Through Architecture
  • SN65LVDS349 Provides a Wide Common-Mode Range Replacement
    for the SN65LVDS048A or the DS90LV048A
  • APPLICATIONS
    • Logic Level Translator
    • Point-to-Point Baseband Data Transmission
      Over 100- Media
    • ECL/PECL-to-LVTTL Conversion
    • Wireless Base Stations
    • Central Office or PABX Switches

  • Meets or Exceeds the Requirements of ANSI
    TIA/EIA-644A Standard
  • Single-Channel Signaling Rates up to
    560 Mbps
  • –4 V to 5 V Common-Mode Input Voltage
    Range
  • Flow-Through Architecture
  • SN65LVDS349 Provides a Wide Common-Mode Range Replacement
    for the SN65LVDS048A or the DS90LV048A
  • APPLICATIONS
    • Logic Level Translator
    • Point-to-Point Baseband Data Transmission
      Over 100- Media
    • ECL/PECL-to-LVTTL Conversion
    • Wireless Base Stations
    • Central Office or PABX Switches

The SN65LVDS349 is a high-speed, quadruple differential receiver with a wide common-mode input voltage range. This allows receipt of TIA/EIA-644 signals with up to 3-V of ground noise or a variety of differential and single-ended logic levels. The ’349 is in a 16-pin package to match the industry-standard footprint of the DS90LV048. The ’349 offers a flow-through architecture with all inputs on one side and outputs on the other to ease board layout and reduce crosstalk between receivers.

The LVDS349 provides 3x the standard’s minimum common-mode noise voltage tolerance. The –4 V to 5 V common-mode range allows usage in harsh operating environments or accepts LVPECL, PECL, LVECL, ECL, CMOS, and LVCMOS levels without level shifting circuitry. See the Application Information Section for more details on the ECL/PECL to LVDS interface.

Precise control of the differential input voltage thresholds allows for inclusion of 50 mV of input-voltage hysteresis to improve noise rejection. The differential input thresholds are still no more than ±50 mV over the full input common-mode voltage range.

The receiver inputs can withstand ±15 kV human-body model (HBM), with respect to ground, without damage. This provides reliability in cabled and other connections where potentially damaging noise is always a threat.

The intended application of these devices and signaling technique is for point-to-point baseband data transmission over controlled impedance media of approximately 100 . The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

The SN65LVDS349 is characterized for operation from –40°C to 85°C.

The SN65LVDS349 is a high-speed, quadruple differential receiver with a wide common-mode input voltage range. This allows receipt of TIA/EIA-644 signals with up to 3-V of ground noise or a variety of differential and single-ended logic levels. The ’349 is in a 16-pin package to match the industry-standard footprint of the DS90LV048. The ’349 offers a flow-through architecture with all inputs on one side and outputs on the other to ease board layout and reduce crosstalk between receivers.

The LVDS349 provides 3x the standard’s minimum common-mode noise voltage tolerance. The –4 V to 5 V common-mode range allows usage in harsh operating environments or accepts LVPECL, PECL, LVECL, ECL, CMOS, and LVCMOS levels without level shifting circuitry. See the Application Information Section for more details on the ECL/PECL to LVDS interface.

Precise control of the differential input voltage thresholds allows for inclusion of 50 mV of input-voltage hysteresis to improve noise rejection. The differential input thresholds are still no more than ±50 mV over the full input common-mode voltage range.

The receiver inputs can withstand ±15 kV human-body model (HBM), with respect to ground, without damage. This provides reliability in cabled and other connections where potentially damaging noise is always a threat.

The intended application of these devices and signaling technique is for point-to-point baseband data transmission over controlled impedance media of approximately 100 . The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

The SN65LVDS349 is characterized for operation from –40°C to 85°C.

下載 觀看有字幕稿的影片 影片

您可能會感興趣的類似產品

open-in-new 比較替代產品
引腳對引腳的功能與所比較的產品相同
SN65LVDS048A 現行 具有流通針腳的四路 LVDS 接收器 Has the added Fail-Safe feature, less current consumption, smaller propagation delay and less expensive
SN65LVDS348 現行 具有 -4 至 5-V 共用模式範圍的四路 LVDS 接收器 Has the added Fail-Safe feature

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 6
類型 標題 日期
* Data sheet Quad High-Speed Differential Receiver datasheet 2010年 9月 14日
Application brief LVDS to Improve EMC in Motor Drives 2018年 9月 27日
Application brief How Far, How Fast Can You Operate LVDS Drivers and Receivers? 2018年 8月 3日
Application brief How to Terminate LVDS Connections with DC and AC Coupling 2018年 5月 16日
Application note SN65LVDS348 vs SN65LVDS349 2010年 10月 5日
Application note An Overview of LVDS Technology 1998年 10月 5日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
模擬工具

TINA-TI — 基於 SPICE 的類比模擬程式

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
使用指南: PDF
封裝 引腳 下載
TSSOP (PW) 16 檢視選項

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 資格摘要
  • 進行中可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片