產品詳細資料

Function Memory interface Output frequency (max) (MHz) 500 Number of outputs 25 Output supply voltage (V) 1.5, 1.8 Core supply voltage (V) 1.5, 1.8 Features DDR2 register Operating temperature range (°C) 0 to 70 Rating Catalog Output type SSTL-18 Input type SSTL-18
Function Memory interface Output frequency (max) (MHz) 500 Number of outputs 25 Output supply voltage (V) 1.5, 1.8 Core supply voltage (V) 1.5, 1.8 Features DDR2 register Operating temperature range (°C) 0 to 70 Rating Catalog Output type SSTL-18 Input type SSTL-18
NFBGA (NMJ) 96 74.25 mm² 13.5 x 5.5
  • Member of the Texas Instruments Widebus+™ Family
  • Pinout Optimizes DDR-II DIMM PCB Layout
  • Configurable as 25-Bit 1:1 or 14-Bit 1:2 Registered Buffer
  • Chip-Select Inputs Gate the Data Outputs from Changing State and Minimizes System Power Consumption
  • Output Edge-Control Circuitry Minimizes Switching Noise in an Unterminated Line
  • Supports SSTL_18 Data Inputs
  • Differential Clock (CLK and CLK\) Inputs
  • Supports LVCMOS Switching Levels on the Control and RESET\ Inputs
  • RESET\ Input Disables Differential Input Receivers, Resets All Registers, and Forces All Outputs Low
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 5000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

Widebus+ is a trademark of Texas Instruments.

  • Member of the Texas Instruments Widebus+™ Family
  • Pinout Optimizes DDR-II DIMM PCB Layout
  • Configurable as 25-Bit 1:1 or 14-Bit 1:2 Registered Buffer
  • Chip-Select Inputs Gate the Data Outputs from Changing State and Minimizes System Power Consumption
  • Output Edge-Control Circuitry Minimizes Switching Noise in an Unterminated Line
  • Supports SSTL_18 Data Inputs
  • Differential Clock (CLK and CLK\) Inputs
  • Supports LVCMOS Switching Levels on the Control and RESET\ Inputs
  • RESET\ Input Disables Differential Input Receivers, Resets All Registers, and Forces All Outputs Low
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 5000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

Widebus+ is a trademark of Texas Instruments.

This 25-bit 1:1 or 14-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V VCC operation. In the 1:1 pinout configuration, only one device per DIMM is required to drive nine SDRAM loads. In the 1:2 pinout configuration, two devices per DIMM are required to drive 18 SDRAM loads.

All inputs are SSTL_18, except the LVCMOS reset (RESET)\ and LVCMOS control (Cn) inputs. All outputs are edge-controlled circuits optimized for unterminated DIMM loads and meet SSTL_18 specifications.

The SN74SSTU32864 operates from a differential clock (CLK and CLK\). Data are registered at the crossing of CLK going high and CLK\ going low.

The C0 input controls the pinout configuration of the 1:2 pinout from register-A configuration (when low) to register-B configuration (when high). The C1 input controls the pinout configuration from 25-bit 1:1 (when low) to 14-bit 1:2 (when high). C0 and C1 should not be switched during normal operation. They should be hard-wired to a valid low or high level to configure the register in the desired mode. In the 25-bit 1:1 pinout configuration, the A6, D6, and H6 terminals are driven low and should not be used.

The device supports low-power standby operation. When RESET\ is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET\ is low, all registers are reset and all outputs are forced low. The LVCMOS RESET\ and Cn inputs always must be held at a valid logic high or low level.

The two VREF pins (A3 and T3), are connected together internally by approximately 150 . However, it is necessary to connect only one of the two VREF pins to the external VREF power supply. An unused VREF pin should be terminated with a VREF coupling capacitor.

The device also supports low-power active operation by monitoring both system chip select (DCS\ and CSR\) inputs and will gate the Qn outputs from changing states when both DCS\ and CSR\ inputs are high. If either DCS\ or CSR\ input is low, the Qn outputs function normally. The RESET\ input has priority over the DCS\ and CSR\ control and forces the output low. If the DCS\ control functionality is not desired, the CSR\ input can be hard-wired to ground, in which case, the setup-time requirement for DCS\ is the same as for the other D data inputs.

To ensure defined outputs from the register before a stable clock has been supplied, RESET\ must be held in the low state during power up.

This 25-bit 1:1 or 14-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V VCC operation. In the 1:1 pinout configuration, only one device per DIMM is required to drive nine SDRAM loads. In the 1:2 pinout configuration, two devices per DIMM are required to drive 18 SDRAM loads.

All inputs are SSTL_18, except the LVCMOS reset (RESET)\ and LVCMOS control (Cn) inputs. All outputs are edge-controlled circuits optimized for unterminated DIMM loads and meet SSTL_18 specifications.

The SN74SSTU32864 operates from a differential clock (CLK and CLK\). Data are registered at the crossing of CLK going high and CLK\ going low.

The C0 input controls the pinout configuration of the 1:2 pinout from register-A configuration (when low) to register-B configuration (when high). The C1 input controls the pinout configuration from 25-bit 1:1 (when low) to 14-bit 1:2 (when high). C0 and C1 should not be switched during normal operation. They should be hard-wired to a valid low or high level to configure the register in the desired mode. In the 25-bit 1:1 pinout configuration, the A6, D6, and H6 terminals are driven low and should not be used.

The device supports low-power standby operation. When RESET\ is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET\ is low, all registers are reset and all outputs are forced low. The LVCMOS RESET\ and Cn inputs always must be held at a valid logic high or low level.

The two VREF pins (A3 and T3), are connected together internally by approximately 150 . However, it is necessary to connect only one of the two VREF pins to the external VREF power supply. An unused VREF pin should be terminated with a VREF coupling capacitor.

The device also supports low-power active operation by monitoring both system chip select (DCS\ and CSR\) inputs and will gate the Qn outputs from changing states when both DCS\ and CSR\ inputs are high. If either DCS\ or CSR\ input is low, the Qn outputs function normally. The RESET\ input has priority over the DCS\ and CSR\ control and forces the output low. If the DCS\ control functionality is not desired, the CSR\ input can be hard-wired to ground, in which case, the setup-time requirement for DCS\ is the same as for the other D data inputs.

To ensure defined outputs from the register before a stable clock has been supplied, RESET\ must be held in the low state during power up.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 12
類型 標題 日期
* Data sheet SN74SSTU32864 datasheet 2003年 3月 20日
* User guide CTS MicroStar BGA Discontinued and Redesigned 2022年 5月 8日
Selection guide Logic Guide (Rev. AB) 2017年 6月 12日
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
Application note DDR2 Memory Interface Clocks and Registers - Overview 2009年 3月 25日
User guide LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
Application note TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
User guide ALVC Advanced Low-Voltage CMOS Including SSTL, HSTL, And ALB (Rev. B) 2002年 8月 1日
Application note Designing With Logic (Rev. C) 1997年 6月 1日
Application note Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
Application note Live Insertion 1996年 10月 1日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

模擬型號

HSPICE Model of SN74SSTU32864 (Rev. A)

SCEJ146A.ZIP (81 KB) - HSpice Model
模擬型號

SN74SSTU32864 IBIS Model

SCEM343.ZIP (58 KB) - IBIS Model
模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
封裝 引腳 下載
NFBGA (NMJ) 96 檢視選項

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 資格摘要
  • 進行中可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片